These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 39046572)

  • 1. A Review of Anode Materials for Dual-Ion Batteries.
    Wu H; Luo S; Wang H; Li L; Fang Y; Zhang F; Gao X; Zhang Z; Yuan W
    Nanomicro Lett; 2024 Jul; 16(1):252. PubMed ID: 39046572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies towards Low-Cost Dual-Ion Batteries with High Performance.
    Zhou X; Liu Q; Jiang C; Ji B; Ji X; Tang Y; Cheng HM
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):3802-3832. PubMed ID: 30865353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental Understanding and Optimization Strategies for Dual-Ion Batteries: A Review.
    Chen C; Lee CS; Tang Y
    Nanomicro Lett; 2023 May; 15(1):121. PubMed ID: 37127729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic Electrode Materials for Dual-Ion Batteries.
    Tong Y; Wei Y; Song A; Ma Y; Yang J
    ChemSusChem; 2024 Apr; 17(7):e202301468. PubMed ID: 38116879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Functional Electrolytes Towards Commercial Dual-Ion Batteries.
    Jiang H; Chen Z; Yang Y; Fan C; Zhao J; Cui G
    ChemSusChem; 2023 Feb; 16(4):e202201561. PubMed ID: 36098496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in Low-Temperature Dual-Ion Batteries.
    Yu D; Li K; Ma G; Ru F; Zhang X; Luo W; Hu P; Chen D; Wang H
    ChemSusChem; 2023 Feb; 16(4):e202201595. PubMed ID: 36504344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode.
    Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q
    Molecules; 2023 May; 28(11):. PubMed ID: 37298755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spreading the Landscape of Dual Ion Batteries: from Electrode to Electrolyte.
    Liu M; Zhang W; Zheng W
    ChemSusChem; 2023 Feb; 16(4):e202201375. PubMed ID: 35997662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Discharge Capacity and Ultra-Fast-Charging Sodium Dual-Ion Battery Based on Insoluble Organic Polymer Anode and Concentrated Electrolyte.
    Wu H; Ye Z; Zhu J; Luo S; Li L; Yuan W
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36300925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable Dual-Ion Batteries beyond Li.
    Zhao Z; Alshareef HN
    Adv Mater; 2024 Feb; 36(7):e2309223. PubMed ID: 37907202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Synthesis of SnO
    Jayan P; Anjali A; Park S; Lee YS; Aravindan V
    Small; 2024 Feb; 20(5):e2305309. PubMed ID: 37752746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application-Based Prospects for Dual-Ion Batteries.
    Holoubek J; Chen Z; Liu P
    ChemSusChem; 2023 Feb; 16(4):e202201245. PubMed ID: 35998216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Anode Materials for Rechargeable Sodium-Ion Batteries.
    Qiao S; Zhou Q; Ma M; Liu HK; Dou SX; Chong S
    ACS Nano; 2023 Jun; 17(12):11220-11252. PubMed ID: 37289640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances of Zn Metal-Free "Rocking-Chair"-Type Zinc Ion Batteries: Recent Developments and Future Perspectives.
    Bai Y; Zhang H; Liang W; Zhu C; Yan L; Li C
    Small; 2024 Feb; 20(8):e2306111. PubMed ID: 37821411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications.
    Yuan S; Huang X; Kong T; Yan L; Wang Y
    Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bipolar and Self-Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dual-Ion Batteries.
    Wang HG; Wang H; Si Z; Li Q; Wu Q; Shao Q; Wu L; Liu Y; Wang Y; Song S; Zhang H
    Angew Chem Int Ed Engl; 2019 Jul; 58(30):10204-10208. PubMed ID: 31127675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual-Ion Battery.
    Xiang L; Ou X; Wang X; Zhou Z; Li X; Tang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17924-17930. PubMed ID: 32558980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges.
    Pavlovskii AA; Pushnitsa K; Kosenko A; Novikov P; Popovich AA
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium-Based Dual-Ion Batteries Operating at -60 °C Enabled By Co-Intercalation Anode Chemistry.
    Que L; Wu J; Lan Z; Xie Y; Yu F; Wang Z; Meng J; Zhang X
    Adv Mater; 2023 Dec; 35(52):e2307592. PubMed ID: 37949102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.