These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 39046572)
21. Potassium-Based Dual-Ion Batteries Operating at -60 °C Enabled By Co-Intercalation Anode Chemistry. Que L; Wu J; Lan Z; Xie Y; Yu F; Wang Z; Meng J; Zhang X Adv Mater; 2023 Dec; 35(52):e2307592. PubMed ID: 37949102 [TBL] [Abstract][Full Text] [Related]
22. Recent Advancements in Devising Computational Strategies for Dual-Ion Batteries. Das S; Manna SS; Pathak B ChemSusChem; 2023 Feb; 16(4):e202201405. PubMed ID: 36044685 [TBL] [Abstract][Full Text] [Related]
23. Evaluating a Dual-Ion Battery with an Antimony-Carbon Composite Anode. Ramireddy T; Wrogemann JM; Haneke L; Sultana I; Kremer F; Ian Chen Y; Winter M; Placke T; Glushenkov AM ChemSusChem; 2023 Nov; 16(21):e202300445. PubMed ID: 37606900 [TBL] [Abstract][Full Text] [Related]
24. Strategies for improving cathode electrolyte interphase in high-performance dual-ion batteries. He Y; Chen Z; Zhang Y iScience; 2024 Aug; 27(8):110491. PubMed ID: 39171291 [TBL] [Abstract][Full Text] [Related]
25. Reverse Dual-Ion Battery via a ZnCl Wu X; Xu Y; Zhang C; Leonard DP; Markir A; Lu J; Ji X J Am Chem Soc; 2019 Apr; 141(15):6338-6344. PubMed ID: 30917652 [TBL] [Abstract][Full Text] [Related]
26. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation. Lu Y; Ni Y; Chen J Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205 [TBL] [Abstract][Full Text] [Related]
27. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Wang T; Li C; Xie X; Lu B; He Z; Liang S; Zhou J ACS Nano; 2020 Dec; 14(12):16321-16347. PubMed ID: 33314908 [TBL] [Abstract][Full Text] [Related]
28. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives. Zhang L; Zhang Y; Xu Z; Zhu P Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371 [TBL] [Abstract][Full Text] [Related]
29. Reverse Dual-Ion Battery Enabled by Reversing the Cation/Anion Storage Mechanism in an Aqueous ZnCl Sethi A; Kumar U A; Dhavale VM Chemphyschem; 2023 Jul; 24(14):e202300098. PubMed ID: 37221939 [TBL] [Abstract][Full Text] [Related]
30. Hybrid Aqueous/Nonaqueous Water-in-Bisalt Electrolyte Enables Safe Dual Ion Batteries. Zhu J; Xu Y; Fu Y; Xiao D; Li Y; Liu L; Wang Y; Zhang Q; Li J; Yan X Small; 2020 Apr; 16(17):e1905838. PubMed ID: 32227436 [TBL] [Abstract][Full Text] [Related]
32. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries. Lei X; Liang X; Yang R; Zhang F; Wang C; Lee CS; Tang Y Small; 2022 Jun; 18(22):e2200418. PubMed ID: 35315220 [TBL] [Abstract][Full Text] [Related]
33. Large Interlayer Distance and Heteroatom-Doping of Graphite Provide New Insights into the Dual-Ion Storage Mechanism in Dual-Carbon Batteries. Hu X; Ma Y; Qu W; Qian J; Li Y; Chen Y; Zhou A; Wang H; Zhang F; Hu Z; Huang Y; Li L; Wu F; Chen R Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202307083. PubMed ID: 37489757 [TBL] [Abstract][Full Text] [Related]
34. Insight into the Role of Fluoroethylene Carbonate on the Stability of Sb||Graphite Dual-Ion Batteries in Propylene Carbonate-Based Electrolyte. Yang Z; Zhou XZ; Hao ZQ; Chen J; Li L; Zhao Q; Lai WH; Chou SL Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202313142. PubMed ID: 37917045 [TBL] [Abstract][Full Text] [Related]
35. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries. Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921 [TBL] [Abstract][Full Text] [Related]
36. Hard Carbons as Anodes in Sodium-Ion Batteries: Sodium Storage Mechanism and Optimization Strategies. Liu L; Tian Y; Abdussalam A; Gilani MRHS; Zhang W; Xu G Molecules; 2022 Oct; 27(19):. PubMed ID: 36235057 [TBL] [Abstract][Full Text] [Related]
37. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry. Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099 [TBL] [Abstract][Full Text] [Related]
38. WS Bellani S; Wang F; Longoni G; Najafi L; Oropesa-Nuñez R; Del Rio Castillo AE; Prato M; Zhuang X; Pellegrini V; Feng X; Bonaccorso F Nano Lett; 2018 Nov; 18(11):7155-7164. PubMed ID: 30285447 [TBL] [Abstract][Full Text] [Related]
39. Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries: Mechanisms, Strategies, and Prospects. Wang G; Wang G; Fei L; Zhao L; Zhang H Nanomicro Lett; 2024 Mar; 16(1):150. PubMed ID: 38466504 [TBL] [Abstract][Full Text] [Related]
40. Regulation of Cathode-Electrolyte Interphase via Electrolyte Additives in Lithium Ion Batteries. Wang XT; Gu ZY; Li WH; Zhao XX; Guo JZ; Du KD; Luo XX; Wu XL Chem Asian J; 2020 Sep; 15(18):2803-2814. PubMed ID: 32543733 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]