These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 39046778)

  • 1. Measurement of solubility product reveals the interplay of oligomerization and self-association for defining condensate formation.
    Chattaraj A; Baltaci Z; Chung S; Mayer BJ; Loew LM; Ditlev JA
    Mol Biol Cell; 2024 Sep; 35(9):ar122. PubMed ID: 39046778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of solubility product in a model condensate reveals the interplay of small oligomerization and self-association.
    Chattaraj A; Baltaci Z; Mayer BJ; Loew LM; Ditlev JA
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The maximum solubility product marks the threshold for condensation of multivalent biomolecules.
    Chattaraj A; Loew LM
    Biophys J; 2023 May; 122(9):1678-1690. PubMed ID: 36987392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The solubility product extends the buffering concept to heterotypic biomolecular condensates.
    Chattaraj A; Blinov ML; Loew LM
    Elife; 2021 Jul; 10():. PubMed ID: 34236318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    Nat Commun; 2023 Sep; 14(1):5527. PubMed ID: 37684240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis.
    Emenecker RJ; Holehouse AS; Strader LC
    Cell Commun Signal; 2021 Jun; 19(1):65. PubMed ID: 34090478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Condensate Atlas from predictive models of heteromolecular condensate composition.
    Saar KL; Scrutton RM; Bloznelyte K; Morgunov AS; Good LL; Lee AA; Teichmann SA; Knowles TPJ
    Nat Commun; 2024 Jul; 15(1):5418. PubMed ID: 38987300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag.
    Brumbaugh-Reed EH; Gao Y; Aoki K; Toettcher JE
    Nat Commun; 2024 Aug; 15(1):6717. PubMed ID: 39112465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation of hnRNPA1 Low-Complexity Domain Condensation Monitored by Dynamic Light Scattering.
    Tsoi PS; Ferreon JC; Ferreon ACM
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 38999934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility.
    Rana U; Xu K; Narayanan A; Walls MT; Panagiotopoulos AZ; Avalos JL; Brangwynne CP
    Nat Chem; 2024 Jul; 16(7):1073-1082. PubMed ID: 38383656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental Aspects of Phase-Separated Biomolecular Condensates.
    Zhou HX; Kota D; Qin S; Prasad R
    Chem Rev; 2024 Jul; 124(13):8550-8595. PubMed ID: 38885177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen-Bonded Network of Water in Phase-Separated Biomolecular Condensates.
    Joshi A; Avni A; Walimbe A; Rai SK; Sarkar S; Mukhopadhyay S
    J Phys Chem Lett; 2024 Aug; 15(30):7724-7734. PubMed ID: 39042834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Pappu R; Farag M; Borcherds W; Bremer A; Mittag T
    Res Sq; 2023 May; ():. PubMed ID: 37205474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taylor Dispersion-Induced Phase Separation for the Efficient Characterisation of Protein Condensate Formation.
    Norrild RK; Mason TO; Boyens-Thiele L; Ray S; Mortensen JB; Fritsch AW; Iglesias-Artola JM; Klausen LK; Stender EGP; Jensen H; Buell AK
    Angew Chem Int Ed Engl; 2024 Jun; 63(25):e202404018. PubMed ID: 38593269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the phase separation and oligomerization activities of the carboxysome positioning protein McdB.
    Basalla JL; Mak CA; Byrne JA; Ghalmi M; Hoang Y; Vecchiarelli AG
    Elife; 2023 Sep; 12():. PubMed ID: 37668016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-driven phase transitions in biomolecular condensates.
    Wadsworth GM; Srinivasan S; Lai LB; Datta M; Gopalan V; Banerjee PR
    Mol Cell; 2024 Oct; 84(19):3692-3705. PubMed ID: 39366355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolutionarily nascent architecture underlying the formation and emergence of biomolecular condensates.
    Jaberi-Lashkari N; Lee B; Aryan F; Calo E
    Cell Rep; 2023 Aug; 42(8):112955. PubMed ID: 37586369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.