These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 39046884)

  • 1. Deciphering lung adenocarcinoma prognosis and immunotherapy response through an AI-driven stemness-related gene signature.
    Ye B; Hongting G; Zhuang W; Chen C; Yi S; Tang X; Jiang A; Zhong Y
    J Cell Mol Med; 2024 Jul; 28(14):e18564. PubMed ID: 39046884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing lung adenocarcinoma prognosis and immunotherapy prediction with a multi-omics consensus machine learning approach.
    Lin H; Zhang X; Feng Y; Gong Z; Li J; Wang W; Fan J
    J Cell Mol Med; 2024 Jul; 28(13):e18520. PubMed ID: 38958523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi‑omics identification of a signature based on malignant cell-associated ligand-receptor genes for lung adenocarcinoma.
    Xu S; Chen X; Ying H; Chen J; Ye M; Lin Z; Zhang X; Shen T; Li Z; Zheng Y; Zhang D; Ke Y; Chen Z; Lu Z
    BMC Cancer; 2024 Sep; 24(1):1138. PubMed ID: 39267056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-learning and combined analysis of single-cell and bulk-RNA sequencing identified a DC gene signature to predict prognosis and immunotherapy response for patients with lung adenocarcinoma.
    Zhang L; Guan M; Zhang X; Yu F; Lai F
    J Cancer Res Clin Oncol; 2023 Nov; 149(15):13553-13574. PubMed ID: 37507593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive analysis of PPP4C's impact on prognosis, immune microenvironment, and immunotherapy response in lung adenocarcinoma using single-cell sequencing and multi-omics.
    Wang K; Peng B; Xu R; Lu T; Chang X; Shen Z; Shi J; Li M; Wang C; Zhou X; Xu C; Chang H; Zhang L
    Front Immunol; 2024; 15():1416632. PubMed ID: 39026674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated bulk and single-cell RNA sequencing identifies an aneuploidy-based gene signature to predict sensitivity of lung adenocarcinoma to traditional chemotherapy drugs and patients' prognosis.
    Wang X; Chen J; Li C; Liu Y; Chen S; Lv F; Lan K; He W; Zhu H; Xu L; Ma K; Guo H
    PeerJ; 2024; 12():e17545. PubMed ID: 38938612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and validation of a novel cuproptosis-related stemness signature to predict prognosis and immune landscape in lung adenocarcinoma by integrating single-cell and bulk RNA-sequencing.
    Yang J; Liu K; Yang L; Ji J; Qin J; Deng H; Wang Z
    Front Immunol; 2023; 14():1174762. PubMed ID: 37287976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune landscape and a novel immunotherapy-related gene signature associated with clinical outcome in early-stage lung adenocarcinoma.
    Bao X; Shi R; Zhao T; Wang Y
    J Mol Med (Berl); 2020 Jun; 98(6):805-818. PubMed ID: 32333046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated multi-omics analysis and machine learning to refine molecular subtypes, prognosis, and immunotherapy in lung adenocarcinoma.
    Han T; Bai Y; Liu Y; Dong Y; Liang C; Gao L; Zhou J; Guo J; Wu J; Hu D
    Funct Integr Genomics; 2024 Jun; 24(4):118. PubMed ID: 38935217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals immune suppression subtypes and establishes a novel signature for determining the prognosis in lung adenocarcinoma.
    Mao S; Wang Y; Chao N; Zeng L; Zhang L
    Cell Oncol (Dordr); 2024 Oct; 47(5):1697-1713. PubMed ID: 38616208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning framework develops neutrophil extracellular traps model for clinical outcome and immunotherapy response in lung adenocarcinoma.
    Han AX; Long BY; Li CY; Huang DD; Xiong EQ; Li FJ; Wu GL; Liu Q; Yang GB; Hu HY
    Apoptosis; 2024 Aug; 29(7-8):1090-1108. PubMed ID: 38519636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prognostic and immunotherapeutic implications of bilirubin metabolism-associated genes in lung adenocarcinoma.
    Ren K; Ling X; Chen L; Li Z; Huang T
    J Cell Mol Med; 2024 May; 28(9):e18346. PubMed ID: 38693853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disulfidptosis-related lncRNAs signature predicting prognosis and immunotherapy effect in lung adenocarcinoma.
    Hong S; Zhang Y; Wang D; Wang H; Zhang H; Jiang J; Chen L
    Aging (Albany NY); 2024 Jun; 16(11):9972-9989. PubMed ID: 38862217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Stem Cell-related Gene Markers by Comprehensive Transcriptome Analysis to Predict the Prognosis and Immunotherapy of Lung Adenocarcinoma.
    Lai H; Wen X; Peng Y; Zhang L
    Curr Stem Cell Res Ther; 2024; 19(5):743-754. PubMed ID: 37605423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating machine learning and single-cell analysis to uncover lung adenocarcinoma progression and prognostic biomarkers.
    Zhang P; Feng J; Rui M; Xie J; Zhang L; Zhang Z
    J Cell Mol Med; 2024 Jul; 28(13):e18516. PubMed ID: 38958577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive pan-cancer analysis reveals EPHB2 is a novel predictive biomarker for prognosis and immunotherapy response.
    Xu S; Zheng Y; Ye M; Shen T; Zhang D; Li Z; Lu Z
    BMC Cancer; 2024 Aug; 24(1):1064. PubMed ID: 39198775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical Significance and Immunologic Landscape of a Five-IL(R)-Based Signature in Lung Adenocarcinoma.
    Fan T; Pan S; Yang S; Hao B; Zhang L; Li D; Geng Q
    Front Immunol; 2021; 12():693062. PubMed ID: 34497605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of m6A/m5C/m1A regulated lncRNA signature for prognostic prediction, personalized immune intervention and drug selection in LUAD.
    Ma C; Gu Z; Yang Y
    J Cell Mol Med; 2024 Apr; 28(8):e18282. PubMed ID: 38647237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiomics Analysis of Disulfidptosis Patterns and Integrated Machine Learning to Predict Immunotherapy Response in Lung Adenocarcinoma.
    Liu J; Li H; Zhang N; Dong Q; Liang Z
    Curr Med Chem; 2024; 31(25):4034-4055. PubMed ID: 38685772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of prognosis and immunotherapy efficacy based on metabolic landscape in lung adenocarcinoma by bulk, single-cell RNA sequencing and Mendelian randomization analyses.
    Liu Y; Zhang X; Pang Z; Wang Y; Zheng H; Wang G; Wang K; Du J
    Aging (Albany NY); 2024 May; 16(10):8772-8809. PubMed ID: 38771130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.