These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39046930)
1. Green Polymer Electrolytes Prepared by a Cost-Effective Approach. Lai WC; Liu LJ; Tseng SJ Langmuir; 2024 Aug; 40(31):16492-16501. PubMed ID: 39046930 [TBL] [Abstract][Full Text] [Related]
2. Novel poly(ethylene glycol) gel electrolytes prepared using self-assembled 1,3:2,4-dibenzylidene-D-sorbitol. Lai WC; Chen CC Soft Matter; 2014 Jan; 10(2):312-9. PubMed ID: 24651903 [TBL] [Abstract][Full Text] [Related]
3. Effect of morphological change of copper-oxide fillers on the performance of solid polymer electrolytes for lithium-metal polymer batteries. Choi BN; Yang JH; Kim YS; Chung CH RSC Adv; 2019 Jul; 9(38):21760-21770. PubMed ID: 35518876 [TBL] [Abstract][Full Text] [Related]
4. Enhanced ionic conductivity and mechanical strength in nanocomposite electrolytes with nonlinear polymer architectures. Bakar R; Darvishi S; Şenses E Turk J Chem; 2023; 47(1):242-252. PubMed ID: 37720861 [TBL] [Abstract][Full Text] [Related]
5. Rigid-flexible coupling network solid polymer electrolytes for all-solid-state lithium metal batteries. Wu JC; Gao S; Li X; Zhou H; Gao H; Hu J; Fan Z; Liu Y J Colloid Interface Sci; 2024 May; 661():1025-1032. PubMed ID: 38335787 [TBL] [Abstract][Full Text] [Related]
6. Novel Composite Gel Electrolytes with Enhanced Electrical Conductivity and Thermal Stability Prepared Using Self-Assembled Nanofibrillar Networks. Lai WC; Liu LJ; Huang PH Langmuir; 2017 Jun; 33(25):6390-6397. PubMed ID: 28594182 [TBL] [Abstract][Full Text] [Related]
7. Polyethylene Oxide-Based Composites as Solid-State Polymer Electrolytes for Lithium Metal Batteries: A Mini Review. Zhao S; Wu Q; Ma W; Yang L Front Chem; 2020; 8():640. PubMed ID: 32850656 [TBL] [Abstract][Full Text] [Related]
8. High Ion-Conducting Solid-State Composite Electrolytes with Carbon Quantum Dot Nanofillers. Ma C; Dai K; Hou H; Ji X; Chen L; Ivey DG; Wei W Adv Sci (Weinh); 2018 May; 5(5):1700996. PubMed ID: 29876221 [TBL] [Abstract][Full Text] [Related]
16. Improvement in Phase Compatibility and Mechanical Properties of Poly(L-lactide)- Srihanam P; Srisuwan Y; Phromsopha T; Manphae A; Baimark Y Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836015 [TBL] [Abstract][Full Text] [Related]
17. Epoxy-Based Interlocking Membranes for All Solid-State Lithium Ion Batteries: The Effects of Amine Curing Agents on Electrochemical Properties. Yu TY; Yeh SC; Lee JY; Wu NL; Jeng RJ Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641061 [TBL] [Abstract][Full Text] [Related]
18. Tailored Solid Polymer Electrolytes by Montmorillonite with High Ionic Conductivity for Lithium-Ion Batteries. Zhao Y; Wang Y Nanoscale Res Lett; 2019 Dec; 14(1):366. PubMed ID: 31807969 [TBL] [Abstract][Full Text] [Related]
19. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors. Han JH; Lee JY; Suh DH; Hong YT; Kim TH ACS Appl Mater Interfaces; 2017 Oct; 9(39):33913-33924. PubMed ID: 28892608 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous Improvement of Ionic Conductivity and Mechanical Strength in Block Copolymer Electrolytes with Double Conductive Nanophases. Cao XH; Li JH; Yang MJ; Yang JL; Wang RY; Zhang XH; Xu JT Macromol Rapid Commun; 2020 Apr; 41(7):e1900622. PubMed ID: 32077181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]