These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 39046963)
1. The metabolic pathways of carbon assimilation and polyhydroxyalkanoate production by Rhodospirillum rubrum in response to different atmospheric fermentation. Tang M; Zhen X; Zhao G; Wu S; Hua W; Qiang J; Yanling C; Wang W PLoS One; 2024; 19(7):e0306222. PubMed ID: 39046963 [TBL] [Abstract][Full Text] [Related]
2. Photoheterotrophic Assimilation of Valerate and Associated Polyhydroxyalkanoate Production by Bayon-Vicente G; Zarbo S; Deutschbauer A; Wattiez R; Leroy B Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651203 [TBL] [Abstract][Full Text] [Related]
3. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum. Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812 [TBL] [Abstract][Full Text] [Related]
4. Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum. Revelles O; Tarazona N; García JL; Prieto MA Environ Microbiol; 2016 Feb; 18(2):708-20. PubMed ID: 26472698 [TBL] [Abstract][Full Text] [Related]
5. Study of the Production of Poly(Hydroxybutyrate- Cabecas Segura P; Onderwater R; Deutschbauer A; Dewasme L; Wattiez R; Leroy B Appl Environ Microbiol; 2022 Mar; 88(6):e0158621. PubMed ID: 35080906 [TBL] [Abstract][Full Text] [Related]
6. Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum. Revelles O; Beneroso D; Menéndez JA; Arenillas A; García JL; Prieto MA Microb Biotechnol; 2017 Nov; 10(6):1412-1417. PubMed ID: 27677746 [TBL] [Abstract][Full Text] [Related]
7. Exploring Rhodospirillum rubrum response to high doses of carbon monoxide under light and dark conditions. Godoy MS; Verdú I; de Miguel SR; Jiménez JD; Prieto MA Appl Microbiol Biotechnol; 2024 Mar; 108(1):258. PubMed ID: 38466440 [TBL] [Abstract][Full Text] [Related]
8. Tailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrum. Karmann S; Follonier S; Egger D; Hebel D; Panke S; Zinn M Microb Biotechnol; 2017 Nov; 10(6):1365-1375. PubMed ID: 28585362 [TBL] [Abstract][Full Text] [Related]
9. A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Choi D; Chipman DC; Bents SC; Brown RC Appl Biochem Biotechnol; 2010 Feb; 160(4):1032-46. PubMed ID: 19247588 [TBL] [Abstract][Full Text] [Related]
10. Genetic Plasticity and Ethylmalonyl Coenzyme A Pathway during Acetate Assimilation in Rhodospirillum rubrum S1H under Photoheterotrophic Conditions. De Meur Q; Deutschbauer A; Koch M; Wattiez R; Leroy B Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180364 [TBL] [Abstract][Full Text] [Related]
11. Aerobic-anaerobic transition boosts poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in Rhodospirillum rubrum: the key role of carbon dioxide. Godoy MS; de Miguel SR; Prieto MA Microb Cell Fact; 2023 Mar; 22(1):47. PubMed ID: 36899367 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from unrelated carbon sources in engineered Rhodospirillum rubrum. Heinrich D; Raberg M; Steinbüchel A FEMS Microbiol Lett; 2015 Apr; 362(8):fnv038. PubMed ID: 25761750 [TBL] [Abstract][Full Text] [Related]
13. Reductive tricarboxylic acid cycle enzymes and reductive amino acid synthesis pathways contribute to electron balance in a McCully AL; Onyeziri MC; LaSarre B; Gliessman JR; McKinlay JB Microbiology (Reading); 2020 Feb; 166(2):199-211. PubMed ID: 31774392 [TBL] [Abstract][Full Text] [Related]
14. Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-beta-hydroxyalkanoate. Do YS; Smeenk J; Broer KM; Kisting CJ; Brown R; Heindel TJ; Bobik TA; DiSpirito AA Biotechnol Bioeng; 2007 Jun; 97(2):279-86. PubMed ID: 17054121 [TBL] [Abstract][Full Text] [Related]
15. Boosting hydrogen production in Rhodospirillum rubrum by syngas-driven photoheterotrophic adaptive evolution. Hernández-Herreros N; Rodríguez A; Galán B; Auxiliadora Prieto M Bioresour Technol; 2024 Aug; 406():130972. PubMed ID: 38876276 [TBL] [Abstract][Full Text] [Related]
16. Role of genetic redundancy in polyhydroxyalkanoate (PHA) polymerases in PHA biosynthesis in Rhodospirillum rubrum. Jin H; Nikolau BJ J Bacteriol; 2012 Oct; 194(20):5522-9. PubMed ID: 22865850 [TBL] [Abstract][Full Text] [Related]
17. Performance of trickle-bed bioreactors for converting synthesis gas to methane. Kimmel DE; Klasson KT; Clausen EC; Gaddy JL Appl Biochem Biotechnol; 1991; 28-29():457-69. PubMed ID: 1929378 [TBL] [Abstract][Full Text] [Related]
18. New perspectives on butyrate assimilation in Rhodospirillum rubrum S1H under photoheterotrophic conditions. De Meur Q; Deutschbauer A; Koch M; Bayon-Vicente G; Cabecas Segura P; Wattiez R; Leroy B BMC Microbiol; 2020 May; 20(1):126. PubMed ID: 32434546 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the Involvement of the Isoleucine Biosynthesis Pathway in Photoheterotrophic Metabolism of Bayon-Vicente G; Marchand E; Ducrotois J; Dufrasne FE; Hallez R; Wattiez R; Leroy B Front Microbiol; 2021; 12():731976. PubMed ID: 34621257 [TBL] [Abstract][Full Text] [Related]
20. Global Proteomic Analysis Reveals High Light Intensity Adaptation Strategies and Polyhydroxyalkanoate Production in Bayon-Vicente G; Wattiez R; Leroy B Front Microbiol; 2020; 11():464. PubMed ID: 32269553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]