BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 3904711)

  • 1. Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth.
    Routtenberg A
    Behav Neural Biol; 1985 Sep; 44(2):186-200. PubMed ID: 3904711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein F1, a substrate for membrane protein kinase C.
    Lovinger DM; Colley PA; Akers RF; Nelson RB; Routtenberg A
    Brain Res; 1986 Dec; 399(2):205-11. PubMed ID: 3828760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity.
    Chan SY; Murakami K; Routtenberg A
    J Neurosci; 1986 Dec; 6(12):3618-27. PubMed ID: 3794793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of protein F1 (47 kDa, 4.5 pI): a kinase C substrate directly related to neural plasticity.
    Nelson RB; Routtenberg A
    Exp Neurol; 1985 Jul; 89(1):213-24. PubMed ID: 3159591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes.
    Schaechter JD; Benowitz LI
    J Neurosci; 1993 Oct; 13(10):4361-71. PubMed ID: 8410192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A selective increase in phosporylation of protein F1, a protein kinase C substrate, directly related to three day growth of long term synaptic enhancement.
    Lovinger DM; Akers RF; Nelson RB; Barnes CA; McNaughton BL; Routtenberg A
    Brain Res; 1985 Sep; 343(1):137-43. PubMed ID: 2994827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-promoted translocation of protein kinase C to synaptic membranes: relation to the phosphorylation of an endogenous substrate (protein F1) involved in synaptic plasticity.
    Akers RF; Routtenberg A
    J Neurosci; 1987 Dec; 7(12):3976-83. PubMed ID: 3121805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase C phosphorylates a 47 Mr protein (F1) directly related to synaptic plasticity.
    Akers RF; Routtenberg A
    Brain Res; 1985 May; 334(1):147-51. PubMed ID: 3158377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the coidentification of GAP-43, a growth-associated protein, and F1, a plasticity-associated protein.
    Snipes GJ; Chan SY; McGuire CB; Costello BR; Norden JJ; Freeman JA; Routtenberg A
    J Neurosci; 1987 Dec; 7(12):4066-75. PubMed ID: 3694262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arachidonic acid, but not sodium nitroprusside, stimulates presynaptic protein kinase C and phosphorylation of GAP-43 in rat hippocampal slices and synaptosomes.
    Luo Y; Vallano ML
    J Neurochem; 1995 Apr; 64(4):1808-18. PubMed ID: 7891109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting patterns of protein phosphorylation in human normal and Alzheimer brain: focus on protein kinase C and protein F1/GAP-43.
    Florez JC; Nelson RB; Routtenberg A
    Exp Neurol; 1991 Jun; 112(3):264-72. PubMed ID: 1827625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective increase in phosphorylation of a 47-kDa protein (F1) directly related to long-term potentiation.
    Routtenberg A; Lovinger DM
    Behav Neural Biol; 1985 Jan; 43(1):3-11. PubMed ID: 3158299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteins localized to presynaptic terminal linked to persistence of long-term potentiation (LTP): quantitative analysis of two-dimensional gels.
    Nelson RB; Linden DJ; Routtenberg A
    Brain Res; 1989 Sep; 497(1):30-42. PubMed ID: 2790456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of presynaptic protein kinase C activation following long-term potentiation in rat hippocampal slices.
    Leahy JC; Luo Y; Kent CS; Meiri KF; Vallano ML
    Neuroscience; 1993 Feb; 52(3):563-74. PubMed ID: 8095708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term potentiation and synaptic protein phosphorylation.
    Pasinelli P; Ramakers GM; Urban IJ; Hens JJ; Oestreicher AB; de Graan PN; Gispen WH
    Behav Brain Res; 1995 Jan; 66(1-2):53-9. PubMed ID: 7755899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of the presynaptic protein B-50 (GAP-43) is increased during electrically induced long-term potentiation.
    Gianotti C; Nunzi MG; Gispen WH; Corradetti R
    Neuron; 1992 May; 8(5):843-8. PubMed ID: 1534012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid and fatty acid regulation of signal transduction at synapses: potential role for protein kinase C in information storage.
    Routtenberg A
    J Neural Transm Suppl; 1987; 24():239-45. PubMed ID: 3316497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective decline in protein F1 phosphorylation in hippocampus of senescent rats.
    Barnes CA; Mizumori SJ; Lovinger DM; Sheu FS; Murakami K; Chan SY; Linden DJ; Nelson RB; Routtenberg A
    Neurobiol Aging; 1988; 9(4):393-8. PubMed ID: 3185858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential changes in the phosphorylation of the protein kinase C substrates myristoylated alanine-rich C kinase substrate and growth-associated protein-43/B-50 following Schaffer collateral long-term potentiation and long-term depression.
    Ramakers GM; McNamara RK; Lenox RH; De Graan PN
    J Neurochem; 1999 Nov; 73(5):2175-83. PubMed ID: 10537078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The two major phosphoproteins in growth cones are probably identical to two protein kinase C substrates correlated with persistence of long-term potentiation.
    Nelson RB; Linden DJ; Hyman C; Pfenninger KH; Routtenberg A
    J Neurosci; 1989 Feb; 9(2):381-9. PubMed ID: 2918368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.