These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The wild boar (Sus scrofa Linnaeus, 1758) as secondary reservoir of Fasciola hepatica in Galicia (NW Spain). Mezo M; González-Warleta M; Castro-Hermida JA; Manga-González MY; Peixoto R; Mas-Coma S; Valero MA Vet Parasitol; 2013 Dec; 198(3-4):274-83. PubMed ID: 24103736 [TBL] [Abstract][Full Text] [Related]
23. Semi-quantitative risk assessment by expert elicitation of potential introduction routes of African swine fever from wild reservoir to domestic pig industry and subsequent spread during the Belgian outbreak (2018-2019). Mauroy A; Depoorter P; Saegerman C; Cay B; De Regge N; Filippitzi ME; Fischer C; Laitat M; Maes D; Morelle K; Nauwynck H; Simons X; van den Berg T; Van Huffel X; Thiry E; Dewulf J Transbound Emerg Dis; 2021 Sep; 68(5):2761-2773. PubMed ID: 33713549 [TBL] [Abstract][Full Text] [Related]
24. A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain. Rodríguez-Prieto V; Martínez-López B; Barasona JA; Acevedo P; Romero B; Rodriguez-Campos S; Gortázar C; Sánchez-Vizcaíno JM; Vicente J BMC Vet Res; 2012 Aug; 8():148. PubMed ID: 22931852 [TBL] [Abstract][Full Text] [Related]
25. Dynamics of Aujeszky's disease virus infection in wild boar in enzootic scenarios. Casades-Martí L; González-Barrio D; Royo-Hernández L; Díez-Delgado I; Ruiz-Fons F Transbound Emerg Dis; 2020 Jan; 67(1):388-405. PubMed ID: 31536143 [TBL] [Abstract][Full Text] [Related]
26. Assessment of the impact of forestry and leisure activities on wild boar spatial disturbance with a potential application to ASF risk of spread. Petit K; Dunoyer C; Fischer C; Hars J; Baubet E; López-Olvera JR; Rossi S; Collin E; Le Potier MF; Belloc C; Peroz C; Rose N; Vaillancourt JP; Saegerman C Transbound Emerg Dis; 2020 May; 67(3):1164-1176. PubMed ID: 31821736 [TBL] [Abstract][Full Text] [Related]
27. Stochastic modelling of African swine fever in wild boar and domestic pigs: Epidemic forecasting and comparison of disease management strategies. Dankwa EA; Lambert S; Hayes S; Thompson RN; Donnelly CA Epidemics; 2022 Sep; 40():100622. PubMed ID: 36041286 [TBL] [Abstract][Full Text] [Related]
28. Estimation of infection risk on pig farms in infected wild boar areas-Epidemiological analysis for the reemergence of classical swine fever in Japan in 2018. Hayama Y; Shimizu Y; Murato Y; Sawai K; Yamamoto T Prev Vet Med; 2020 Feb; 175():104873. PubMed ID: 31896501 [TBL] [Abstract][Full Text] [Related]
29. Cattle drive Salmonella infection in the wildlife-livestock interface. Mentaberre G; Porrero MC; Navarro-Gonzalez N; Serrano E; Domínguez L; Lavín S Zoonoses Public Health; 2013 Nov; 60(7):510-8. PubMed ID: 23253262 [TBL] [Abstract][Full Text] [Related]
30. Analysis of spatio-temporal patterns of African swine fever cases in Russian wild boar does not reveal an endemic situation. Lange M; Siemen H; Blome S; Thulke HH Prev Vet Med; 2014 Nov; 117(2):317-25. PubMed ID: 25205556 [TBL] [Abstract][Full Text] [Related]
31. Spatial epidemiology of African swine fever: Host, landscape and anthropogenic drivers of disease occurrence in wild boar. Podgórski T; Borowik T; Łyjak M; Woźniakowski G Prev Vet Med; 2020 Apr; 177():104691. PubMed ID: 31122672 [TBL] [Abstract][Full Text] [Related]
32. Constant Hepatitis E Virus (HEV) Circulation in Wild Boar and Red Deer in Spain: An Increasing Concern Source of HEV Zoonotic Transmission. Kukielka D; Rodriguez-Prieto V; Vicente J; Sánchez-Vizcaíno JM Transbound Emerg Dis; 2016 Oct; 63(5):e360-8. PubMed ID: 25571944 [TBL] [Abstract][Full Text] [Related]
33. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark. Boklund A; Goldbach SG; Uttenthal A; Alban L Prev Vet Med; 2008 Jul; 85(3-4):187-206. PubMed ID: 18339438 [TBL] [Abstract][Full Text] [Related]
34. Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Kukielka E; Barasona JA; Cowie CE; Drewe JA; Gortazar C; Cotarelo I; Vicente J Prev Vet Med; 2013 Nov; 112(3-4):213-21. PubMed ID: 24050782 [TBL] [Abstract][Full Text] [Related]
35. Statistical Exploration of Local Transmission Routes for African Swine Fever in Pigs in the Russian Federation, 2007-2014. Vergne T; Gogin A; Pfeiffer DU Transbound Emerg Dis; 2017 Apr; 64(2):504-512. PubMed ID: 26192820 [TBL] [Abstract][Full Text] [Related]
36. African Swine Fever in wild boar: Assessing interventions in South Korea. Jo YS; Gortázar C Transbound Emerg Dis; 2021 Sep; 68(5):2878-2889. PubMed ID: 33844467 [TBL] [Abstract][Full Text] [Related]
37. Understanding African Swine Fever infection dynamics in Sardinia using a spatially explicit transmission model in domestic pig farms. Mur L; Sánchez-Vizcaíno JM; Fernández-Carrión E; Jurado C; Rolesu S; Feliziani F; Laddomada A; Martínez-López B Transbound Emerg Dis; 2018 Feb; 65(1):123-134. PubMed ID: 28296281 [TBL] [Abstract][Full Text] [Related]
38. Campylobacter shared between free-ranging cattle and sympatric wild ungulates in a natural environment (NE Spain). Navarro-Gonzalez N; Ugarte-Ruiz M; Porrero MC; Zamora L; Mentaberre G; Serrano E; Mateos A; Lavín S; Domínguez L Ecohealth; 2014 Sep; 11(3):333-42. PubMed ID: 24595731 [TBL] [Abstract][Full Text] [Related]
39. Surveillance of foot-and-mouth disease (FMD) in susceptible wildlife and domestic ungulates in Southeast of Bulgaria following a FMD case in wild boar. Alexandrov T; Stefanov D; Kamenov P; Miteva A; Khomenko S; Sumption K; Meyer-Gerbaulet H; Depner K Vet Microbiol; 2013 Sep; 166(1-2):84-90. PubMed ID: 23830685 [TBL] [Abstract][Full Text] [Related]
40. Basic reproduction number of African swine fever in wild boars ( Lim JS; Kim E; Ryu PD; Pak SI J Vet Sci; 2021 Sep; 22(5):e71. PubMed ID: 34553516 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]