These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3904736)

  • 1. Fluorescence studies on the nucleotide- and Ca2+-binding domains of molluscan myosin.
    Wells C; Warriner KE; Bagshaw CR
    Biochem J; 1985 Oct; 231(1):31-8. PubMed ID: 3904736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperativity and regulation of scallop myosin and myosin fragments.
    Kalabokis VN; Szent-Györgyi AG
    Biochemistry; 1997 Dec; 36(50):15834-40. PubMed ID: 9398315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient-kinetic studies of the adenosine triphosphatase activity of scallop heavy meromyosin.
    Jackson AP; Bagshaw CR
    Biochem J; 1988 Apr; 251(2):515-26. PubMed ID: 2969725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The calcium ion dependence of scallop myosin ATPase activity.
    Walmsley AR; Evans GE; Bagshaw CR
    J Muscle Res Cell Motil; 1990 Dec; 11(6):512-21. PubMed ID: 2150676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium binding and calcium-sensitivity of heavy meromyosin and subfragment-1 from squid (Todarodes pacificus) mantle and scallop (Patinopecten yessoensis) adductor muscles.
    Kamiya S; Konno K
    Comp Biochem Physiol B; 1989; 92(3):481-6. PubMed ID: 2523274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of essential light chain EF hand domains in calcium binding and regulation of scallop myosin.
    Fromherz S; Szent-Györgyi AG
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7652-6. PubMed ID: 7644472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic model of the co-operative binding of calcium and ADP to scallop (Argopecten irradians) heavy meromyosin.
    Nyitrai M; Szent-Györgyi AG; Geeves MA
    Biochem J; 2002 Jul; 365(Pt 1):19-30. PubMed ID: 12071838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of the regulatory domain of scallop myosin: role of the essential light chain in calcium binding.
    Kwon H; Goodwin EB; Nyitray L; Berliner E; O'Neall-Hennessey E; Melandri FD; Szent-Györgyi AG
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4771-5. PubMed ID: 2352947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular movements promoted by metal nucleotides in the heavy-chain regions of myosin heads from skeletal muscle.
    Mornet D; Pantel P; Audemard E; Derancourt J; Kassab R
    J Mol Biol; 1985 Jun; 183(3):479-89. PubMed ID: 2991534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of mild heat treatment on actin and nucleotide binding of myosin subfragment 1.
    Setton A; Dan-Goor M; Muhlrad A
    Biochemistry; 1988 Jan; 27(2):792-6. PubMed ID: 2964871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin may stay in EADP species during the catch contraction in scallop smooth muscle.
    Takahashi M; Morita F
    J Biochem; 1989 Nov; 106(5):868-71. PubMed ID: 2613694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 8-Anilino-1-naphthalenesulphonate, a fluorescent probe for the regulatory light chain binding site of scallop myosin.
    Bennett AJ; Patel N; Wells C; Bagshaw CR
    J Muscle Res Cell Motil; 1984 Apr; 5(2):165-82. PubMed ID: 6725549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loop I can modulate ADP affinity, ATPase activity, and motility of different scallop myosins. Transient kinetic analysis of S1 isoforms.
    Kurzawa-Goertz SE; Perreault-Micale CL; Trybus KM; Szent-Györgyi AG; Geeves MA
    Biochemistry; 1998 May; 37(20):7517-25. PubMed ID: 9585566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of ionic conditions, temperature, and chemical modification on the fluorescence of myosin during the steady state of ATP hydrolysis. A comparison of the fluorescnece and electron spin resonance spectra of the spin-labeled enzyme.
    Seidel JC
    J Biol Chem; 1975 Jul; 250(14):5681-7. PubMed ID: 237927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium binding and conformation of regulatory light chains of smooth muscle myosin of scallop.
    Morita F; Kondo S; Tomari K; Minowa O; Ikura M; Hikichi K
    J Biochem; 1985 Feb; 97(2):553-61. PubMed ID: 4008468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan emission from myosin subfragment 1: acrylamide and nucleotide effect monitored by decay-associated spectra.
    Torgerson PM
    Biochemistry; 1984 Jun; 23(13):3002-7. PubMed ID: 6466627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [High sensitivity to Ca2 ions of the conformational changes of F-actin, induced by the myosin 1 subfragment].
    Borovikov IuS; Levitskiĭ DI
    Biokhimiia; 1984 May; 49(5):767-71. PubMed ID: 6743705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic trapping of intermediates of the scallop heavy meromyosin adenosine triphosphatase reaction revealed by formycin nucleotides.
    Jackson AP; Bagshaw CR
    Biochem J; 1988 Apr; 251(2):527-40. PubMed ID: 2969726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary structure of myosin from the striated adductor muscle of the Atlantic scallop, Pecten maximus, and expression of the regulatory domain.
    Janes DP; Patel H; Chantler PD
    J Muscle Res Cell Motil; 2000; 21(5):415-22. PubMed ID: 11129432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence variations in the surface loop near the nucleotide binding site modulate the ATP turnover rates of molluscan myosins.
    Perreault-Micale CL; Kalabokis VN; Nyitray L; Szent-Györgyi AG
    J Muscle Res Cell Motil; 1996 Oct; 17(5):543-53. PubMed ID: 8906622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.