These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39047800)
1. Insight into furfural-tolerant and hydrogen-producing microbial consortia: Mechanism of furfural tolerance and hydrogen production. Luo LL; Zhu MJ Bioresour Technol; 2024 Sep; 407():131141. PubMed ID: 39047800 [TBL] [Abstract][Full Text] [Related]
2. Biological hydrogen production from palm oil mill effluent (POME) by anaerobic consortia and Clostridium beijerinckii. Rosa D; Medeiros ABP; Martinez-Burgos WJ; do Nascimento JR; de Carvalho JC; Sydney EB; Soccol CR J Biotechnol; 2020 Nov; 323():17-23. PubMed ID: 32569792 [TBL] [Abstract][Full Text] [Related]
3. Identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052. Zhang Y; Ujor V; Wick M; Ezeji TC Anaerobe; 2015 Jun; 33():124-31. PubMed ID: 25796546 [TBL] [Abstract][Full Text] [Related]
4. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation. Ujor V; Agu CV; Gopalan V; Ezeji TC Appl Microbiol Biotechnol; 2014; 98(14):6511-21. PubMed ID: 24839212 [TBL] [Abstract][Full Text] [Related]
5. Interactions between Clostridium beijerinckii and Geobacter metallireducens in co-culture fermentation with anthrahydroquinone-2, 6-disulfonate (AH2QDS) for enhanced biohydrogen production from xylose. Zhang X; Ye X; Finneran KT; Zilles JL; Morgenroth E Biotechnol Bioeng; 2013 Jan; 110(1):164-72. PubMed ID: 22886601 [TBL] [Abstract][Full Text] [Related]
6. Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of Miscanthus giganteus to butanol. Zhang Y; Ezeji TC J Ind Microbiol Biotechnol; 2014 Oct; 41(10):1505-16. PubMed ID: 25085743 [TBL] [Abstract][Full Text] [Related]
8. [Effect of initial substrate concentrations and pH on hydrogen production from xylose with Clostridium butyricum T4]. Qiu J; Xu J; Ren N Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):887-91. PubMed ID: 19777817 [TBL] [Abstract][Full Text] [Related]
9. Anthrahydroquinone-2,6,-disulfonate (AH2QDS) increases hydrogen molar yield and xylose utilization in growing cultures of Clostridium beijerinckii. Ye X; Morgenroth E; Zhang X; Finneran KT Appl Microbiol Biotechnol; 2011 Nov; 92(4):855-64. PubMed ID: 21947605 [TBL] [Abstract][Full Text] [Related]
10. Chromosomal integration of aldo-keto-reductase and short-chain dehydrogenase/reductase genes in Clostridium beijerinckii NCIMB 8052 enhanced tolerance to lignocellulose-derived microbial inhibitory compounds. Okonkwo CC; Ujor V; Ezeji TC Sci Rep; 2019 May; 9(1):7634. PubMed ID: 31114009 [TBL] [Abstract][Full Text] [Related]
11. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors. Detman A; Mielecki D; Chojnacka A; Salamon A; Błaszczyk MK; Sikora A Microb Cell Fact; 2019 Feb; 18(1):36. PubMed ID: 30760264 [TBL] [Abstract][Full Text] [Related]
12. [Prolonged cultivation of an anaerobic bacterial community producing hydrogen]. Belokopytov BF; Ryzhmanova IaV; Laurinavichius KS; Shcherbakova VA Prikl Biokhim Mikrobiol; 2012; 48(2):218-25. PubMed ID: 22586916 [TBL] [Abstract][Full Text] [Related]
13. Clostridium species strain BOH3 tolerates and transforms inhibitors from horticulture waste hydrolysates. Yan Y; He J Appl Microbiol Biotechnol; 2017 Aug; 101(15):6289-6297. PubMed ID: 28676908 [TBL] [Abstract][Full Text] [Related]
14. Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663. Wannawilai S; Lee WC; Chisti Y; Sirisansaneeyakul S J Biotechnol; 2017 Jan; 241():147-157. PubMed ID: 27899337 [TBL] [Abstract][Full Text] [Related]
15. Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Gutiérrez T; Buszko ML; Ingram LO; Preston JF Appl Biochem Biotechnol; 2002; 98-100():327-40. PubMed ID: 12018260 [TBL] [Abstract][Full Text] [Related]
16. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community. Liu Z; Zhang C; Wang L; He J; Li B; Zhang Y; Xing XH Bioresour Technol; 2015 Jan; 175():152-9. PubMed ID: 25459816 [TBL] [Abstract][Full Text] [Related]
17. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture. Jilani SB; Dev C; Eqbal D; Jawed K; Prasad R; Yazdani SS Microb Cell Fact; 2020 Jul; 19(1):153. PubMed ID: 32723338 [TBL] [Abstract][Full Text] [Related]
18. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Wang X; Miller EN; Yomano LP; Zhang X; Shanmugam KT; Ingram LO Appl Environ Microbiol; 2011 Aug; 77(15):5132-40. PubMed ID: 21685167 [TBL] [Abstract][Full Text] [Related]