These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39047816)

  • 1. Insights into the catalytic effect of atmospheric organic trace species on the hydration of Criegee intermediates.
    Li M; Li L; Liu S; Zhang Q; Wang W; Wang Q
    Sci Total Environ; 2024 Nov; 949():174877. PubMed ID: 39047816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Study on the Gas Phase and Gas-Liquid Interface Reaction Mechanism of Criegee Intermediates with Glycolic Acid Sulfate.
    Li L; Zhang Q; Wei Y; Wang Q; Wang W
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Study on the Gas-Phase and Aqueous Interface Reaction Mechanism of Criegee Intermediates with 2-Methylglyceric Acid and the Nucleation of Products.
    Li L; Zhang Q; Wei Y; Wang Q; Wang W
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of reactions between Criegee intermediates and methanesulfonic acid at the air-water interface.
    Ma X; Zhao X; Huang Z; Wang J; Lv G; Xu F; Zhang Q; Wang W
    Sci Total Environ; 2020 Mar; 707():135804. PubMed ID: 31862431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple evaluations of atmospheric behavior between Criegee intermediates and HCHO: Gas-phase and air-water interface reaction.
    Zhang T; Wen M; Ding C; Zhang Y; Ma X; Wang Z; Lily M; Liu J; Wang R
    J Environ Sci (China); 2023 May; 127():308-319. PubMed ID: 36522063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Barrierless reactions of C2 Criegee intermediates with H
    Cheng Y; Ding C; Zhang T; Wang R; Mu R; Li Z; Li R; Shi J; Zhu C
    J Environ Sci (China); 2025 Mar; 149():574-584. PubMed ID: 39181669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.
    Zhu C; Kumar M; Zhong J; Li L; Francisco JS; Zeng XC
    J Am Chem Soc; 2016 Sep; 138(35):11164-9. PubMed ID: 27509207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reaction of Criegee intermediates with formamide and its implication to atmospheric aerosols.
    Wei Y; Zhang Q; Huo X; Wang W; Wang Q
    Chemosphere; 2022 Jun; 296():133717. PubMed ID: 35077731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-phase and aqueous-surface reaction mechanism of Criegee radicals with serine and nucleation of products: A theoretical study.
    Li L; Zhang R; Ma X; Wei Y; Zhao X; Zhang R; Xu F; Li Y; Huo X; Zhang Q; Wang W
    Chemosphere; 2021 Oct; 280():130709. PubMed ID: 34162082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of multifunctional compound monoethanolamine on Criegee intermediates reactions and its atmospheric implications.
    Ma X; Zhao X; Wei Y; Wang W; Xu F; Zhang Q; Wang W
    Sci Total Environ; 2020 May; 715():136812. PubMed ID: 32041039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Mechanisms and Atmospheric Implications of Criegee Intermediate-Alcohol Chemistry in the Gas Phase and Aqueous Surface Environments.
    Tang B; Li Z
    J Phys Chem A; 2020 Oct; 124(41):8585-8593. PubMed ID: 32946233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of the reaction mechanism between Criegee intermediates and hydroxyl radicals in the presence of ammonia and amine.
    Wei Y; Xu F; Ma X; Li L; Wang W; Huo X; Zhang Q; Wang W
    Chemosphere; 2022 Jan; 287(Pt 1):131877. PubMed ID: 34523463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces.
    Zhong J; Kumar M; Zhu CQ; Francisco JS; Zeng XC
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7740-7744. PubMed ID: 28471069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of Criegee Intermediate with Nitric Acid at the Air-Water Interface.
    Kumar M; Zhong J; Zeng XC; Francisco JS
    J Am Chem Soc; 2018 Apr; 140(14):4913-4921. PubMed ID: 29564890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into Chemistry on Cloud/Aerosol Water Surfaces.
    Zhong J; Kumar M; Francisco JS; Zeng XC
    Acc Chem Res; 2018 May; 51(5):1229-1237. PubMed ID: 29633837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significant influence of water molecules on the SO
    Cheng Y; Ding C; Wang H; Zhang T; Wang R; Muthiah B; Xu H; Zhang Q; Jiang M
    Phys Chem Chem Phys; 2023 Nov; 25(42):28885-28894. PubMed ID: 37853821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Insights into Criegee Intermediate-Hydroperoxyl Radical Chemistry.
    Li B; Kumar M; Zhou C; Li L; Francisco JS
    J Am Chem Soc; 2022 Aug; 144(32):14740-14747. PubMed ID: 35921588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactions of Criegee Intermediates with Alcohols at Air-Aqueous Interfaces.
    Enami S; Colussi AJ
    J Phys Chem A; 2017 Jul; 121(27):5175-5182. PubMed ID: 28635281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the acetaldehyde oxide Criegee intermediate reaction network in the ozone-assisted low-temperature oxidation of
    Conrad AR; Hansen N; Jasper AW; Thomason NK; Hidaldo-Rodrigues L; Treshock SP; Popolan-Vaida DM
    Phys Chem Chem Phys; 2021 Oct; 23(41):23554-23566. PubMed ID: 34651147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3 : Kinetics and Atmospheric Implications.
    Foreman ES; Kapnas KM; Murray C
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10419-22. PubMed ID: 27440012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.