These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39047816)

  • 21. Determination of the amine-catalyzed SO
    Ma X; Zhao X; Ding Z; Wang W; Wei Y; Xu F; Zhang Q; Wang W
    Chemosphere; 2020 Aug; 252():126292. PubMed ID: 32203779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. QM/MM studies on ozonolysis of α-humulene and Criegee reactions with acids and water at air-water/acetonitrile interfaces.
    Xiao P; Yang JJ; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jun; 20(23):16138-16150. PubMed ID: 29854994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.
    Percival CJ; Welz O; Eskola AJ; Savee JD; Osborn DL; Topping DO; Lowe D; Utembe SR; Bacak A; McFiggans G; Cooke MC; Xiao P; Archibald AT; Jenkin ME; Derwent RG; Riipinen I; Mok DW; Lee EP; Dyke JM; Taatjes CA; Shallcross DE
    Faraday Discuss; 2013; 165():45-73. PubMed ID: 24600996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic Insight into the Reaction of Organic Acids with SO
    Zhong J; Li H; Kumar M; Liu J; Liu L; Zhang X; Zeng XC; Francisco JS
    Angew Chem Int Ed Engl; 2019 Jun; 58(25):8351-8355. PubMed ID: 30980573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Criegee Intermediate-Mediated Oxidation of Dimethyl Disulfide: Effect of Formic Acid and Its Atmospheric Relevance.
    Babu G; Das A; Chakrabarty A; Chowdhury G; Goswami M
    J Phys Chem A; 2023 Oct; 127(40):8415-8426. PubMed ID: 37782474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directional Proton Transfer in the Reaction of the Simplest Criegee Intermediate with Water Involving the Formation of Transient H
    Liu J; Liu Y; Yang J; Zeng XC; He X
    J Phys Chem Lett; 2021 Apr; 12(13):3379-3386. PubMed ID: 33784110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. OH Group Orientation Leads to Organosulfate Formation at the Liquid Aerosol Surface.
    Tan S; Zhang X; Lian Y; Chen X; Yin S; Du L; Ge M
    J Am Chem Soc; 2022 Sep; 144(37):16953-16964. PubMed ID: 36070362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of formic acid on O
    Ali MA; M B
    Phys Chem Chem Phys; 2023 Apr; 25(14):9965-9978. PubMed ID: 36960665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry.
    Berndt T; Herrmann H; Kurtén T
    J Am Chem Soc; 2017 Sep; 139(38):13387-13392. PubMed ID: 28853879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing autoxidation of oleic acid at air-water interface: A neglected and significant pathway for secondary organic aerosols formation.
    He J; Zhang H; Wang W; Ma Y; Yang M; He Y; Liu Z; Yu K; Jiang J
    Environ Res; 2022 Sep; 212(Pt B):113232. PubMed ID: 35398317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2020 Jun; 22(24):13756-13763. PubMed ID: 32538397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tracking the reaction networks of acetaldehyde oxide and glyoxal oxide Criegee intermediates in the ozone-assisted oxidation reaction of crotonaldehyde.
    DeCecco AC; Conrad AR; Floyd AM; Jasper AW; Hansen N; Dagaut P; Moody NE; Popolan-Vaida DM
    Phys Chem Chem Phys; 2024 Aug; 26(34):22319-22336. PubMed ID: 38980126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decomposition of multifunctionalized α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with diols in liquid phases.
    Endo Y; Sakamoto Y; Kajii Y; Enami S
    Phys Chem Chem Phys; 2022 May; 24(19):11562-11572. PubMed ID: 35506905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactions of Criegee Intermediates with Benzoic Acid at the Gas/Liquid Interface.
    Qiu J; Ishizuka S; Tonokura K; Enami S
    J Phys Chem A; 2018 Aug; 122(30):6303-6310. PubMed ID: 29989413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular simulations of green leaf volatiles and atmospheric oxidants on air/water interfaces.
    Liyana-Arachchi TP; Stevens C; Hansel AK; Ehrenhauser FS; Valsaraj KT; Hung FR
    Phys Chem Chem Phys; 2013 Mar; 15(10):3583-92. PubMed ID: 23381146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heteroatom Tuning of Bimolecular Criegee Reactions and Its Implications.
    Kumar M; Francisco JS
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13432-13435. PubMed ID: 27678012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New insights into the mechanism and kinetics of the addition reaction of unsaturated Criegee intermediates to CF
    Lily M; Lv X; Chandra AK; Tsona Tchinda N; Du L
    Environ Sci Process Impacts; 2024 Apr; 26(4):751-764. PubMed ID: 38465670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reaction of Perfluorooctanoic Acid with Criegee Intermediates and Implications for the Atmospheric Fate of Perfluorocarboxylic Acids.
    Taatjes CA; Khan MAH; Eskola AJ; Percival CJ; Osborn DL; Wallington TJ; Shallcross DE
    Environ Sci Technol; 2019 Feb; 53(3):1245-1251. PubMed ID: 30589541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of oligomer-forming reactions involving the major functional groups present in atmospheric secondary organic aerosol particles.
    Maben HK; Ziemann PJ
    Environ Sci Process Impacts; 2023 Feb; 25(2):214-228. PubMed ID: 35665793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.