These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39048199)

  • 1. Amylose molecular weight affects the complexing state and digestibility of the resulting starch-lipid complexes.
    Zhang M; Hou Y; Chen X; Zhao P; Wang Z; Huang J; Hui C; Li C
    Carbohydr Polym; 2024 Oct; 342():122400. PubMed ID: 39048199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and in vitro digestibility of amylose-lipid complexes formed by an extrusion-debranching-complexing strategy.
    Liu Q; Guan H; Guo Y; Wang D; Yang Y; Ji H; Jiao A; Jin Z
    Food Chem; 2024 Mar; 437(Pt 2):137950. PubMed ID: 37952395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fatty acids and glycerides on the structure, cooking quality, and in vitro starch digestibility of extruded buckwheat noodles.
    Yu M; Zhang S; Tang P; Meng L; Cheng W; Gao C; Wu D; Feng X; Wang Z; Tang X
    Food Res Int; 2024 Sep; 191():114713. PubMed ID: 39059913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lecithin on the complexation between different botanically sourced starches and lauric acid.
    He X; Yang L; Zhou L; Gunness P; Hunt W; Solah VA; Sun Q
    Int J Biol Macromol; 2024 May; 268(Pt 2):131996. PubMed ID: 38697417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of V
    Wang YS; Liu WH; Zhang X; Chen HH
    Int J Biol Macromol; 2020 Jul; 154():456-465. PubMed ID: 32194105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key structural factors that determine the in vitro enzymatic digestibility of amylose-complexes.
    Sun R; Chao C; Wang C; Yu J; Copeland L; Wang S
    Carbohydr Polym; 2024 Oct; 342():122383. PubMed ID: 39048225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography.
    Ahmadi-Abhari S; Woortman AJ; Hamer RJ; Loos K
    Food Chem; 2013 Dec; 141(4):4318-23. PubMed ID: 23993621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of triglyceride on complexation between starch and fatty acid.
    Li X; Luo S; Hou Y; Liu Y; Hu X; Liu C
    Int J Biol Macromol; 2020 Jul; 155():1069-1074. PubMed ID: 31712160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids.
    Cervantes-Ramírez JE; Cabrera-Ramirez AH; Morales-Sánchez E; Rodriguez-García ME; Reyes-Vega ML; Ramírez-Jiménez AK; Contreras-Jiménez BL; Gaytán-Martínez M
    Carbohydr Polym; 2020 Oct; 246():116555. PubMed ID: 32747238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on multiscale structures and digestibility of cassava starch and medium-chain fatty acids complexes using molecular simulation techniques.
    Shang W; Li X; Du J; Guo Y; Fu D; He Y; Pan F; Zhang W; Zhou Z
    Food Res Int; 2024 Jul; 187():114373. PubMed ID: 38763649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of short-range molecular order in gelatinized starch on the formation of starch-lauric acid complexes.
    Chao C; Huang S; Yu J; Copeland L; Yang Y; Wang S
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129526. PubMed ID: 38242387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of stearic acid and irradiation alone and in combination on properties of amylose-lipid nanomaterial from high amylose maize starch.
    Ocloo FCK; Ray SS; Emmambux NM
    Carbohydr Polym; 2019 May; 212():352-360. PubMed ID: 30832867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of electron beam irradiation pretreatment and different fatty acid types on the formation, structural characteristics and functional properties of starch-lipid complexes.
    Liu Q; Luo H; Liang D; Zheng Y; Shen H; Li W
    Carbohydr Polym; 2024 Aug; 337():122187. PubMed ID: 38710543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of different kinds of fatty acids on the behavior, structure and digestibility of high amylose maize starch-fatty acid complexes.
    Sun S; Hua S; Hong Y; Gu Z; Cheng L; Ban X; Li Z; Li C; Zhou J
    J Sci Food Agric; 2022 Oct; 102(13):5837-5848. PubMed ID: 35426124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the formation, structure and digestibility of lotus seed amylose-fatty acid complexes prepared by high hydrostatic pressure.
    Guo Z; Jia X; Lin X; Chen B; Sun S; Zheng B
    Food Chem Toxicol; 2019 Jun; 128():81-88. PubMed ID: 30951797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heat treatment and moisture contents on interactions between lauric acid and starch granules.
    Chang F; He X; Fu X; Huang Q; Jane JL
    J Agric Food Chem; 2014 Aug; 62(31):7862-8. PubMed ID: 25056554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and digestibility properties of infrared heat-moisture treated maize starch complexed with stearic acid.
    Mapengo CR; Ray SS; Emmambux MN
    Int J Biol Macromol; 2021 Jun; 180():559-569. PubMed ID: 33753195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes.
    Wokadala OC; Ray SS; Emmambux MN
    Carbohydr Polym; 2012 Sep; 90(1):616-22. PubMed ID: 24751084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of water content of high-amylose corn starch and glutinous rice starch combined with lipids on formation of starch-lipid complexes during deep-fat frying.
    Wang H; Wu Y; Wang N; Yang L; Zhou Y
    Food Chem; 2019 Apr; 278():515-522. PubMed ID: 30583406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potato phosphorylase catalyzed synthesis of amylose-lipid complexes.
    Gelders GG; Goesaert H; Delcour JA
    Biomacromolecules; 2005; 6(5):2622-9. PubMed ID: 16153100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.