These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 39048200)

  • 41. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor.
    Zheng H; Lin N; He Y; Zuo B
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanically Ultra-Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor.
    Long Y; Wang Z; Xu F; Jiang B; Xiao J; Yang J; Wang ZL; Hu W
    Small; 2022 Nov; 18(47):e2203956. PubMed ID: 36228096
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A highly sensitive and anti-freezing conductive strain sensor based on polypyrrole/cellulose nanofiber crosslinked polyvinyl alcohol hydrogel for human motion detection.
    Liu X; Shi H; Song F; Yang W; Yang B; Ding D; Liu Z; Hui L; Zhang F
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128800. PubMed ID: 38101658
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultra-stretchable, adhesive, fatigue resistance, and anti-freezing conductive hydrogel based on gelatin/guar gum and liquid metal for dual-sensory flexible sensor and all-in-one supercapacitors.
    Zhao R; Fang Y; Zhao Z; Song S
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132585. PubMed ID: 38810849
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multifunctional Conductive Double-Network Hydrogel Sensors for Multiscale Motion Detection and Temperature Monitoring.
    Zhao R; Zhao Z; Song S; Wang Y
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59854-59865. PubMed ID: 38095585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dual Network Hydrogel with High Mechanical Properties, Electrical Conductivity, Water Retention and Frost Resistance, Suitable for Wearable Strain Sensors.
    Miao C; Li P; Yu J; Xu X; Zhang F; Tong G
    Gels; 2023 Mar; 9(3):. PubMed ID: 36975673
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High strength, anti-freezing and conductive silkworm excrement cellulose-based ionic hydrogel with physical-chemical double cross-linked for pressure sensing.
    Mu G; He W; He J; Muhammad Y; Shi Z; Zhang B; Zhou L; Zhao Z; Zhao Z
    Int J Biol Macromol; 2023 May; 236():123936. PubMed ID: 36894064
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors.
    Huang X; Wang C; Yang L; Ao X
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid Preparation of Antifreezing Conductive Hydrogels for Flexible Strain Sensors and Supercapacitors.
    Song Y; Niu L; Ma P; Li X; Feng J; Liu Z
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36763089
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stretchable and sensitive sodium alginate ionic hydrogel fibers for flexible strain sensors.
    Tong R; Ma Z; Gu P; Yao R; Li T; Zeng M; Guo F; Liu L; Xu J
    Int J Biol Macromol; 2023 Aug; 246():125683. PubMed ID: 37419262
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrastrong and Tough Urushiol-Based Ionic Conductive Double Network Hydrogels as Flexible Strain Sensors.
    Lin F; Zhu Y; You Z; Li W; Chen J; Zheng X; Zheng G; Song Z; You X; Xu Y
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571113
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Frost-resistant and ultrasensitive strain sensor based on a tannic acid-nanocellulose/sulfonated carbon nanotube-reinforced polyvinyl alcohol hydrogel.
    Li H; Yang Y; Li M; Zhu Y; Zhang C; Zhang R; Song Y
    Int J Biol Macromol; 2022 Oct; 219():199-212. PubMed ID: 35908676
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mxene Reinforced Supramolecular Hydrogels with High Strength, Stretchability, and Reliable Conductivity for Sensitive Strain Sensors.
    Zeng Z; Yu S; Guo C; Lu D; Geng Z; Pei D
    Macromol Rapid Commun; 2022 Aug; 43(15):e2200103. PubMed ID: 35319127
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antibacterial Dual Network Hydrogels for Sensing and Human Health Monitoring.
    Lei H; Zhao J; Ma X; Li H; Fan D
    Adv Healthc Mater; 2021 Nov; 10(21):e2101089. PubMed ID: 34453781
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics.
    Zeng S; Zhang J; Zu G; Huang J
    Carbohydr Polym; 2021 Sep; 267():118198. PubMed ID: 34119165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly Flexible, Self-Bonding, Self-Healing, and Conductive Soft Pressure Sensors Based on Dicarboxylic Cellulose Nanofiber Hydrogels.
    Abouzeid R; Shayan M; Wu T; Gwon J; Kärki TA; Wu Q
    ACS Appl Polym Mater; 2023 Sep; 5(9):7009-7021. PubMed ID: 37705714
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties.
    Hao S; Shao C; Meng L; Cui C; Xu F; Yang J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors.
    Xie Y; Gao S; Jian J; Shi X; Lai C; Wang C; Xu F; Chu F; Zhang D
    Int J Biol Macromol; 2023 Feb; 227():462-471. PubMed ID: 36521712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transparent, photothermal and stretchable alginate-based hydrogels for remote actuation and human motion sensing.
    Sun Z; Hu Y; Wei C; Hao R; Hao C; Liu W; Liu H; Huang M; He S; Yang M
    Carbohydr Polym; 2022 Oct; 293():119727. PubMed ID: 35798423
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flexible Actuator Based on Conductive PAM Hydrogel Electrodes with Enhanced Water Retention Capacity and Conductivity.
    Hong Y; Lin Z; Yang Y; Jiang T; Shang J; Luo Z
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.