These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39048225)

  • 1. Key structural factors that determine the in vitro enzymatic digestibility of amylose-complexes.
    Sun R; Chao C; Wang C; Yu J; Copeland L; Wang S
    Carbohydr Polym; 2024 Oct; 342():122383. PubMed ID: 39048225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms Underlying the Formation of Amylose- Lauric Acid-β-Lactoglobulin Complexes: Experimental and Molecular Dynamics Studies.
    Wang C; Chao C; Yu J; Copeland L; Huang Y; Wang S
    J Agric Food Chem; 2022 Aug; 70(34):10635-10643. PubMed ID: 35994717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Factors That Determine the Amylolytic Properties of Starch-Lipid Complexes.
    Wang C; Chao C; Sun R; Yu J; Copeland L; Wang S
    J Agric Food Chem; 2024 Jun; ():. PubMed ID: 38843452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cooling rate and complexing temperature on the formation of starch-lauric acid-β-lactoglobulin complexes.
    Niu B; Chao C; Cai J; Yu J; Wang S; Wang S
    Carbohydr Polym; 2021 Feb; 253():117301. PubMed ID: 33278955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amylose molecular weight affects the complexing state and digestibility of the resulting starch-lipid complexes.
    Zhang M; Hou Y; Chen X; Zhao P; Wang Z; Huang J; Hui C; Li C
    Carbohydr Polym; 2024 Oct; 342():122400. PubMed ID: 39048199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Debranching on the Formation of Maize Starch-Lauric Acid-β-Lactoglobulin Complexes.
    Cai J; Chao C; Niu B; Yu J; Copeland L; Wang S; Wang S
    J Agric Food Chem; 2021 Aug; 69(32):9086-9093. PubMed ID: 33449697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of short-range molecular order in gelatinized starch on the formation of starch-lauric acid complexes.
    Chao C; Huang S; Yu J; Copeland L; Yang Y; Wang S
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129526. PubMed ID: 38242387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and in vitro digestibility of amylose-lipid complexes formed by an extrusion-debranching-complexing strategy.
    Liu Q; Guan H; Guo Y; Wang D; Yang Y; Ji H; Jiao A; Jin Z
    Food Chem; 2024 Mar; 437(Pt 2):137950. PubMed ID: 37952395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of crystalline structure on the digestibility of amylopectin-based starch-lipid complexes.
    Wang R; He Z; Cao Y; Wang H; Luo X; Feng W; Chen Z; Wang T; Zhang H
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):125191. PubMed ID: 37270130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ultrasound-pretreated starch on the formation, structure and digestibility of starch ternary complexes from lauric acid and β-lactoglobulin.
    Niu B; Qin Y; Xie X; Zhang B; Cheng L; Yan Y
    Ultrason Sonochem; 2024 Oct; 109():106990. PubMed ID: 39018891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of protein-fatty acid interactions on the formation of starch-lipid-protein complexes.
    Chen W; Chao C; Yu J; Copeland L; Wang S; Wang S
    Food Chem; 2021 Dec; 364():130390. PubMed ID: 34161911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effect of hydrothermal treatment and lauric acid complexation under different pressure on starch assembly and digestion behaviors.
    Liu K; Chi C; Huang X; Li X; Chen L
    Food Chem; 2019 Apr; 278():560-567. PubMed ID: 30583412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of heat treatment and moisture contents on interactions between lauric acid and starch granules.
    Chang F; He X; Fu X; Huang Q; Jane JL
    J Agric Food Chem; 2014 Aug; 62(31):7862-8. PubMed ID: 25056554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of moist and dry-heat treatment processes on the structure, physicochemical properties, and in vitro digestibility of wheat starch-lauric acid complexes.
    Kang X; Gao W; Wang B; Yu B; Guo L; Cui B; Abd El-Aty AM
    Food Chem; 2021 Jul; 351():129303. PubMed ID: 33647689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo digestibility of corn starch for weaned pigs: Effects of amylose:amylopectin ratio, extrusion, storage duration, and enzyme supplementation.
    Li Y; Zhang AR; Luo HF; Wei H; Zhou Z; Peng J; Ru YJ
    J Anim Sci; 2015 Jul; 93(7):3512-20. PubMed ID: 26440020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Changes of Starch-Lipid Complexes during Postprocessing and Their Effect on In Vitro Enzymatic Digestibility.
    Qin R; Yu J; Li Y; Copeland L; Wang S; Wang S
    J Agric Food Chem; 2019 Feb; 67(5):1530-1536. PubMed ID: 30633506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prior interaction of protein and lipid affects the formation of ternary complexes with starch.
    Li X; Wang C; Chao C; Yu J; Copeland L; Liu Y; Wang S
    Food Chem; 2023 Nov; 426():136500. PubMed ID: 37329797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the Amylose Nanoscale Polymerization Index on the Digestion Kinetics and Mechanism of Recombinant Chinese Seedless Breadfruit Starch Triadic Complexes.
    Li B; Wang S; Zhang Y; Huang C; Zhao Y; Wu G; Tan L
    J Agric Food Chem; 2023 Apr; ():. PubMed ID: 37024427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of different kinds of fatty acids on the behavior, structure and digestibility of high amylose maize starch-fatty acid complexes.
    Sun S; Hua S; Hong Y; Gu Z; Cheng L; Ban X; Li Z; Li C; Zhou J
    J Sci Food Agric; 2022 Oct; 102(13):5837-5848. PubMed ID: 35426124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of V
    Wang YS; Liu WH; Zhang X; Chen HH
    Int J Biol Macromol; 2020 Jul; 154():456-465. PubMed ID: 32194105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.