BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 3904841)

  • 1. Effect of glucose and insulin administration on hepatic adenylate energy charge and the cytosolic redox state in the neonates of normal and insulin-treated diabetic rats.
    Cuezva JM; Patel MS
    Biol Neonate; 1985; 48(4):221-7. PubMed ID: 3904841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of mitochondrial adenine nucleotide content in newborn rabbit liver.
    Tullson PC; Aprille JR
    Am J Physiol; 1987 Nov; 253(5 Pt 1):E530-5. PubMed ID: 2891302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatic regeneration and metabolism after partial hepatectomy in diabetic rats: effects of insulin therapy.
    Johnston DG; Johnson GA; Alberti KG; Millward-Sadler GH; Mitchell J; Wright R
    Eur J Clin Invest; 1986 Oct; 16(5):384-90. PubMed ID: 3100306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The redox state of NAD+-NADH systems in rat liver during ketosis, and the so-called "triosephosphate block".
    Söling HD; Kattermann R; Schmidt H; Kneer P
    Biochim Biophys Acta; 1966 Jan; 115(1):1-14. PubMed ID: 4286996
    [No Abstract]   [Full Text] [Related]  

  • 6. Changes in adenylate energy charge of the liver after an oral glucose load.
    Kimura K; Kamiyama Y; Ozawa K; Honjo I
    Gastroenterology; 1976 May; 70(5 PT.1):665-8. PubMed ID: 177325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The newborn of diabetic rat. II. Impaired gluconeogenesis in the postnatal period.
    Cuezva JM; Chitra CI; Patel MS
    Pediatr Res; 1982 Aug; 16(8):638-43. PubMed ID: 7050871
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of postnatal hypoxia on the energy homeostasis of the newborn rat during the early neonatal period.
    Arizmendi C; Maties M; Benito M; Medina JM
    Biol Neonate; 1983; 44(1):36-41. PubMed ID: 6882843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of glucose, glycogen, and high-energy phosphates during transient forebrain ischemia in diabetic rats: effect of insulin treatment.
    Lanier WL; Hofer RE; Gallagher WJ
    Anesthesiology; 1996 Apr; 84(4):917-25. PubMed ID: 8638847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DL-alpha-lipoic acid.
    Obrosova I; Cao X; Greene DA; Stevens MJ
    Diabetologia; 1998 Dec; 41(12):1442-50. PubMed ID: 9867211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo effects of lipopolysaccharide on hepatic free-NAD(P)(+)-linked redox states and cytosolic phosphorylation potential in 48-hour-fasted rats.
    Gitomer WL; Miller BC; Cottam GL
    Metabolism; 1995 Sep; 44(9):1170-4. PubMed ID: 7666791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of subcutaneous and intraportal insulin administrations on adenylate energy charge of the liver in diabetic rats.
    Ozawa K; Kamiyama Y; Kimura K; Yamada T; Yamamoto M
    J Lab Clin Med; 1977 May; 89(5):937-45. PubMed ID: 870571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the activity of 'active' pyruvate dehydrogenase complex in the newborn of normal and diabetic rats.
    Chitra CI; Cuezva JM; Patel MS
    Diabetologia; 1985 Mar; 28(3):148-52. PubMed ID: 3888756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic phosphoribosyl pyrophosphate concentration. Regulation by the oxidative pentose phosphate pathway and cellular energy status.
    Kunjara S; Sochor M; Ali SA; Greenbaum AL; McLean P
    Biochem J; 1987 May; 244(1):101-8. PubMed ID: 2444209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-state and adenylic system in albino rat liver during experimental ketosis.
    Hlebarova M; Dinkov L; Orbetzova V; Kirjakov A
    Acta Diabetol Lat; 1970; 7(4):616-30. PubMed ID: 4325244
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of hepatic artery embolization on the adenylate energy charge level and the redox state of the cirrhotic liver.
    Taki Y; Jikko A; Morimoto T; Yokoo N; Tanaka J; Tani T; Kamiyama Y; Tobe T; Ozawa K
    Res Exp Med (Berl); 1986; 186(3):179-83. PubMed ID: 3738218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of hemorrhagic shock on hepatic energy metabolism in carbon tetrachloride-induced cirrhotic rats.
    Ikai I; Shimahara Y; Wakashiro S; Ozaki N; Tokunaga Y; Tanaka A; Morimoto T; Ozawa K
    Circ Shock; 1988 Dec; 26(4):365-74. PubMed ID: 3214931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrauterine growth retardation: altered hepatic energy and redox states in the fetal rat.
    Ogata ES; Swanson SL; Collins JW; Finley SL
    Pediatr Res; 1990 Jan; 27(1):56-63. PubMed ID: 2296473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intractable unphysiologically low adenylate energy charge values in synaptosome fractions: an explanatory hypothesis based on the fraction's heterogeneity.
    Kyriazi HT; Basford RE
    J Neurochem; 1986 Aug; 47(2):512-28. PubMed ID: 3090202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.