These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 39048593)
1. Potential for spatial coexistence of a transboundary migratory species and wind energy development. Huang TK; Feng X; Derbridge JJ; Libby K; Diffendorfer JE; Thogmartin WE; McCracken G; Medellin R; López-Hoffman L Sci Rep; 2024 Jul; 14(1):17050. PubMed ID: 39048593 [TBL] [Abstract][Full Text] [Related]
2. Understanding fatality patterns and sex ratios of Brazilian free-tailed bats ( LiCari ST; Hale AM; Weaver SP; Fritts S; Katzner T; Nelson DM; Williams DA PeerJ; 2023; 11():e16580. PubMed ID: 38084143 [TBL] [Abstract][Full Text] [Related]
3. A smart curtailment approach for reducing bat fatalities and curtailment time at wind energy facilities. Hayes MA; Hooton LA; Gilland KL; Grandgent C; Smith RL; Lindsay SR; Collins JD; Schumacher SM; Rabie PA; Gruver JC; Goodrich-Mahoney J Ecol Appl; 2019 Jun; 29(4):e01881. PubMed ID: 30939226 [TBL] [Abstract][Full Text] [Related]
4. Seasonal patterns of bird and bat collision fatalities at wind turbines. Lloyd JD; Butryn R; Pearman-Gillman S; Allison TD PLoS One; 2023; 18(5):e0284778. PubMed ID: 37163474 [TBL] [Abstract][Full Text] [Related]
5. Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development. Hayes MA; Cryan PM; Wunder MB PLoS One; 2015; 10(7):e0132599. PubMed ID: 26208098 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the Effectiveness of an Ultrasonic Acoustic Deterrent for Reducing Bat Fatalities at Wind Turbines. Arnett EB; Hein CD; Schirmacher MR; Huso MM; Szewczak JM PLoS One; 2013; 8(6):e65794. PubMed ID: 23840369 [TBL] [Abstract][Full Text] [Related]
7. Toward solving the global green-green dilemma between wind energy production and bat conservation. Voigt CC; Bernard E; Huang JC; Frick WF; Kerbiriou C; MacEwan K; Mathews F; Rodríguez-Durán A; Scholz C; Webala PW; Welbergen J; Whitby M Bioscience; 2024 Apr; 74(4):240-252. PubMed ID: 38720909 [TBL] [Abstract][Full Text] [Related]
8. Wind farm facilities in Germany kill noctule bats from near and far. Lehnert LS; Kramer-Schadt S; Schönborn S; Lindecke O; Niermann I; Voigt CC PLoS One; 2014; 9(8):e103106. PubMed ID: 25118805 [TBL] [Abstract][Full Text] [Related]
9. An evaluation of bird and bat mortality at wind turbines in the Northeastern United States. Choi DY; Wittig TW; Kluever BM PLoS One; 2020; 15(8):e0238034. PubMed ID: 32857780 [TBL] [Abstract][Full Text] [Related]
10. Behavioral patterns of bats at a wind turbine confirm seasonality of fatality risk. Goldenberg SZ; Cryan PM; Gorresen PM; Fingersh LJ Ecol Evol; 2021 May; 11(9):4843-4853. PubMed ID: 33976852 [TBL] [Abstract][Full Text] [Related]
11. Informing wind energy development: Land cover and topography predict occupancy for Arizona bats. Starbuck CA; Dickson BG; Chambers CL PLoS One; 2022; 17(6):e0268573. PubMed ID: 35657796 [TBL] [Abstract][Full Text] [Related]
12. Efficacy and cost of acoustic-informed and wind speed-only turbine curtailment to reduce bat fatalities at a wind energy facility in Wisconsin. Rabie PA; Welch-Acosta B; Nasman K; Schumacher S; Schueller S; Gruver J PLoS One; 2022; 17(4):e0266500. PubMed ID: 35395032 [TBL] [Abstract][Full Text] [Related]
13. Drivers of bat activity at wind turbines advocate for mitigating bat exposure using multicriteria algorithm-based curtailment. Barré K; Froidevaux JSP; Sotillo A; Roemer C; Kerbiriou C Sci Total Environ; 2023 Mar; 866():161404. PubMed ID: 36621471 [TBL] [Abstract][Full Text] [Related]
14. Estimation of spatiotemporal trends in bat abundance from mortality data collected at wind turbines. Davy CM; Squires K; Zimmerling JR Conserv Biol; 2021 Feb; 35(1):227-238. PubMed ID: 32424911 [TBL] [Abstract][Full Text] [Related]
15. Peaks in bat activity at turbines and the implications for mitigating the impact of wind energy developments on bats. Richardson SM; Lintott PR; Hosken DJ; Economou T; Mathews F Sci Rep; 2021 Feb; 11(1):3636. PubMed ID: 33574369 [TBL] [Abstract][Full Text] [Related]
16. Experimental trials of species-specific bat flight responses to an ultrasonic deterrent. Fritts SR; Guest EE; Weaver SP; Hale AM; Morton BP; Hein CD PeerJ; 2024; 12():e16718. PubMed ID: 38188150 [TBL] [Abstract][Full Text] [Related]
17. High vulnerability of juvenile Nathusius' pipistrelle bats (Pipistrellus nathusii) at wind turbines. Kruszynski C; Bailey LD; Bach L; Bach P; Fritze M; Lindecke O; Teige T; Voigt CC Ecol Appl; 2022 Mar; 32(2):e2513. PubMed ID: 34877754 [TBL] [Abstract][Full Text] [Related]
18. Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Thaxter CB; Buchanan GM; Carr J; Butchart SHM; Newbold T; Green RE; Tobias JA; Foden WB; O'Brien S; Pearce-Higgins JW Proc Biol Sci; 2017 Sep; 284(1862):. PubMed ID: 28904135 [TBL] [Abstract][Full Text] [Related]
19. Timing and Weather Offer Alternative Mitigation Strategies for Lowering Bat Mortality at Wind Energy Facilities in Ontario. Squires KA; Thurber BG; Zimmerling JR; Francis CM Animals (Basel); 2021 Dec; 11(12):. PubMed ID: 34944278 [TBL] [Abstract][Full Text] [Related]
20. Increasing evidence that bats actively forage at wind turbines. Foo CF; Bennett VJ; Hale AM; Korstian JM; Schildt AJ; Williams DA PeerJ; 2017; 5():e3985. PubMed ID: 29114441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]