These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 39048668)

  • 1. Cardiopulmonary resuscitation with 3:1 Compression:Ventilation or continuous compression with asynchronized ventilation in infantile piglets.
    Morin C; Lee TF; O'Reilly M; Ramsie M; Cheung PY; Schmölzer GM
    Pediatr Res; 2024 Jul; ():. PubMed ID: 39048668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous chest compression during sustained inflation versus continuous compression with asynchronized ventilation in an infantile porcine model of severe bradycardia.
    Morin C; Lee TF; O'Reilly M; Cheung PY; Schmölzer GM
    Resusc Plus; 2024 Jun; 18():100629. PubMed ID: 38617441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chest compressions superimposed with sustained inflations during cardiopulmonary resuscitation in asphyxiated pediatric piglets.
    Morin CMD; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Pediatr Res; 2024 Mar; 95(4):988-995. PubMed ID: 36932182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained Inflation During Chest Compression: A New Technique of Pediatric Cardiopulmonary Resuscitation That Improves Recovery and Survival in a Pediatric Porcine Model.
    Schmölzer GM; Patel SD; Monacelli S; Kim SY; Shim GH; Lee TF; O'Reilly M; Cheung PY
    J Am Heart Assoc; 2021 Aug; 10(15):e019136. PubMed ID: 34284596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Nicoll J; Bigam DL; Cheung PY
    Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Randomized, Controlled Animal Study: 21% or 100% Oxygen during Cardiopulmonary Resuscitation in Asphyxiated Infant Piglets.
    Nyame S; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Children (Basel); 2022 Oct; 9(11):. PubMed ID: 36360329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asynchronous ventilation at 120 compared with 90 or 100 compressions per minute improves haemodynamic recovery in asphyxiated newborn piglets.
    Patel S; Cheung PY; Lee TF; Pasquin MP; Lu M; O'Reilly M; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2020 Jul; 105(4):357-363. PubMed ID: 31123054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets.
    Solevåg AL; Schmölzer GM; O'Reilly M; Lu M; Lee TF; Hornberger LK; Nakstad B; Cheung PY
    Resuscitation; 2016 Sep; 106():7-13. PubMed ID: 27344929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of different durations of sustained inflation during cardiopulmonary resuscitation on return of spontaneous circulation and hemodynamic recovery in severely asphyxiated piglets.
    Mustofa J; Cheung PY; Patel S; Lee TF; Lu M; Pasquin MP; OʼReilly M; Schmölzer GM
    Resuscitation; 2018 Aug; 129():82-89. PubMed ID: 29928955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Different Compression to Ventilation Ratios (2: 1, 3: 1, and 4: 1) during Cardiopulmonary Resuscitation in a Porcine Model of Neonatal Asphyxia.
    Pasquin MP; Cheung PY; Patel S; Lu M; Lee TF; Wagner M; O'Reilly M; Schmölzer GM
    Neonatology; 2018; 114(1):37-45. PubMed ID: 29649792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained inflation with 21% versus 100% oxygen during cardiopulmonary resuscitation of asphyxiated newborn piglets - A randomized controlled animal study.
    Hidalgo CG; Solevag AL; Kim SY; Shim GH; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Resuscitation; 2020 Oct; 155():39-47. PubMed ID: 32712173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sustained inflation pressure during neonatal cardiopulmonary resuscitation of asphyxiated piglets.
    Shim GH; Kim SY; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    PLoS One; 2020; 15(6):e0228693. PubMed ID: 32574159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chest Compressions during Sustained Inflations Improve Recovery When Compared to a 3:1 Compression:Ventilation Ratio during Cardiopulmonary Resuscitation in a Neonatal Porcine Model of Asphyxia.
    Li ES; Görens I; Cheung PY; Lee TF; Lu M; O'Reilly M; Schmölzer GM
    Neonatology; 2017; 112(4):337-346. PubMed ID: 28768280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chest compression rates of 60/min versus 90/min during neonatal cardiopulmonary resuscitation: a randomized controlled animal trial.
    Bruckner M; O'Reilly M; Lee TF; Cheung PY; Schmölzer GM
    Front Pediatr; 2023; 11():1214513. PubMed ID: 37664554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chest Compression Rates of 90/min versus 180/min during Neonatal Cardiopulmonary Resuscitation: A Randomized Controlled Animal Trial.
    Bruckner M; Neset M; Garcia-Hidalgo C; Lee TF; O'Reilly M; Cheung PY; Schmölzer GM
    Children (Basel); 2022 Nov; 9(12):. PubMed ID: 36553282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated mouth-to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest.
    Berg RA; Hilwig RW; Kern KB; Babar I; Ewy GA
    Crit Care Med; 1999 Sep; 27(9):1893-9. PubMed ID: 10507615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Return of spontaneous Circulation Is Not Affected by Different Chest Compression Rates Superimposed with Sustained Inflations during Cardiopulmonary Resuscitation in Newborn Piglets.
    Li ES; Cheung PY; Lee TF; Lu M; O'Reilly M; Schmölzer GM
    PLoS One; 2016; 11(6):e0157249. PubMed ID: 27304210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous chest compressions with asynchronous ventilation improve survival in a neonatal swine model of asphyxial cardiac arrest.
    Aggelina A; Pantazopoulos I; Giokas G; Chalkias A; Mavrovounis G; Papalois A; Douvanas A; Xanthos T; Iacovidou N
    Am J Emerg Med; 2021 Oct; 48():60-66. PubMed ID: 33839633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasopressin versus epinephrine during neonatal cardiopulmonary resuscitation of asphyxiated post-transitional piglets.
    O'Reilly M; Lee TF; Cheung PY; Schmölzer GM
    Resusc Plus; 2023 Sep; 15():100427. PubMed ID: 37519409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between synchronized and non-synchronized ventilation and between guided and non-guided chest compressions during resuscitation in a pediatric animal model after asphyxial cardiac arrest.
    Manrique G; García M; Fernández SN; González R; Solana MJ; López J; Urbano J; López-Herce J
    PLoS One; 2019; 14(7):e0219660. PubMed ID: 31318890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.