These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 39049687)

  • 1. Anionic Surfactant-Modulated Electrode-Electrolyte Interface Promotes H
    Sun W; Tang L; Ge W; Fan Y; Sheng X; Dong L; Zhang W; Jiang H; Li C
    Adv Sci (Weinh); 2024 Sep; 11(36):e2405474. PubMed ID: 39049687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Insights into Surfactant-Modulated Electrode-Electrolyte Interface for Steering H
    Fan Y; Chen Y; Ge W; Dong L; Qi Y; Lian C; Zhou X; Liu H; Liu Z; Jiang H; Li C
    J Am Chem Soc; 2024 Mar; 146(11):7575-7583. PubMed ID: 38466222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant Directionally Assembled at the Electrode-Electrolyte Interface for Facilitating Electrocatalytic Aldehyde Hydrogenation.
    Zhang W; Ge W; Qi Y; Sheng X; Jiang H; Li C
    Angew Chem Int Ed Engl; 2024 Jul; 63(31):e202407121. PubMed ID: 38775229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamically Formed Surfactant Assembly at the Electrified Electrode-Electrolyte Interface Boosting CO
    Ge W; Chen Y; Fan Y; Zhu Y; Liu H; Song L; Liu Z; Lian C; Jiang H; Li C
    J Am Chem Soc; 2022 Apr; 144(14):6613-6622. PubMed ID: 35380035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting Hydrogen Peroxide Electrosynthesis via Modulating the Interfacial Hydrogen-Bond Environment.
    Fang Y; Fan Y; Xie K; Ge W; Zhu Y; Qi Z; Song Z; Jiang H; Li C
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202304413. PubMed ID: 37160619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anionic Surfactant-Tailored Interfacial Microenvironment for Boosting Electrochemical CO
    Yuan X; Ge W; Zhu Y; Dong L; Jiang H; Li C
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38083-38091. PubMed ID: 38986045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopant- and Surfactant-Tuned Electrode-Electrolyte Interface Enabling Efficient Alkynol Semi-Hydrogenation.
    Zhao Y; Xu J; Huang K; Ge W; Liu Z; Lian C; Liu H; Jiang H; Li C
    J Am Chem Soc; 2023 Mar; 145(11):6516-6525. PubMed ID: 36913524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lewis-base ligand-reshaped interfacial hydrogen-bond network boosts CO
    Ge W; Tao H; Dong L; Fan Y; Niu Y; Zhu Y; Lian C; Liu H; Jiang H; Li C
    Natl Sci Rev; 2024 Aug; 11(8):nwae218. PubMed ID: 39034947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte Additive-Modulated Interfacial Microenvironment Boosting CO2 Electrolysis in Acid.
    Wang A; Ge W; Sun W; Sheng X; Dong L; Zhang W; Jiang H; Li C
    Angew Chem Int Ed Engl; 2024 Sep; ():e202412754. PubMed ID: 39219249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steering Selectivity in Electrocatalytic Furfural Reduction via Electrode-Electrolyte Interface Modification.
    Ji K; Liu Y; Wang Y; Kong K; Li J; Liu X; Duan H
    J Am Chem Soc; 2024 May; 146(17):11876-11886. PubMed ID: 38626315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guiding CO
    Banerjee S; Gerke CS; Thoi VS
    Acc Chem Res; 2022 Feb; 55(4):504-515. PubMed ID: 35119260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Efficient Acidic Electrosynthesis of Hydrogen Peroxide at Industrial-Level Current Densities Promoted by Alkali Metal Cations.
    Cao P; Zhao X; Liu Y; Zhang H; Zhao K; Chen S; Yu H; Dong F; Nichols NN; Chen JG; Quan X
    Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202406452. PubMed ID: 38735843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifunctional Oxygen-Defect Bismuth Catalyst toward Concerted Production of H
    Zhang Q; Cao C; Zhou S; Wei W; Chen X; Xu R; Wu XT; Zhu QL
    Adv Mater; 2024 Sep; 36(39):e2408341. PubMed ID: 39097953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Electrosynthesis of Hydrogen Peroxide Using Oxygen-Doped Porous Carbon Catalysts at Industrial Current Densities.
    Jia S; Yu H; Na J; Liu Z; Lv K; Ren Z; Sun S; Shao Z
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38659341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable neutral H
    Li H; Wen P; Itanze DS; Hood ZD; Adhikari S; Lu C; Ma X; Dun C; Jiang L; Carroll DL; Qiu Y; Geyer SM
    Nat Commun; 2020 Aug; 11(1):3928. PubMed ID: 32764644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computation-Guided Design of Highly Defined and Dense Bimetallic Active Sites on a Two-Dimensional Conductive Metal-Organic Framework for Efficient H
    Li Z; Jia J; Sang Z; Liu W; Nie J; Yin L; Hou F; Liu J; Liang J
    Angew Chem Int Ed Engl; 2024 Aug; ():e202408500. PubMed ID: 39115946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering.
    Qi J; Du Y; Yang Q; Jiang N; Li J; Ma Y; Ma Y; Zhao X; Qiu J
    Nat Commun; 2023 Oct; 14(1):6263. PubMed ID: 37805528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrosynthesis of H
    An J; Feng Y; Zhao Q; Wang X; Liu J; Li N
    Environ Sci Ecotechnol; 2022 Jul; 11():100170. PubMed ID: 36158761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure modification of metal phthalocyanines by a carbon nanotube support for efficient oxygen reduction to hydrogen peroxide.
    Lee Y; Lee C; Back S; Sa YJ
    Nanoscale; 2024 May; 16(19):9545-9557. PubMed ID: 38660774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Oxygen Functional Group Modification and the Combined Interface Engineering Strategy for Efficient Hydrogen Peroxide Electrosynthesis.
    Li C; Hu C; Song Y; Sun YM; Yang W; Ma M
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46695-46707. PubMed ID: 36210526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.