These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39052067)
1. Redesigned Guide DNA Enhanced He Y; Wang S; Wen J; Feng N; Ma R; Zhang H; Chen G; Chu X; Chen Y Nano Lett; 2024 Aug; 24(31):9750-9759. PubMed ID: 39052067 [No Abstract] [Full Text] [Related]
2. DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute. Hegge JW; Swarts DC; Chandradoss SD; Cui TJ; Kneppers J; Jinek M; Joo C; van der Oost J Nucleic Acids Res; 2019 Jun; 47(11):5809-5821. PubMed ID: 31069393 [TBL] [Abstract][Full Text] [Related]
3. Programmable cleavage of linear double-stranded DNA by combined action of Argonaute CbAgo from Clostridium butyricum and nuclease deficient RecBC helicase from E. coli. Vaiskunaite R; Vainauskas J; Morris JJL; Potapov V; Bitinaite J Nucleic Acids Res; 2022 May; 50(8):4616-4629. PubMed ID: 35420131 [TBL] [Abstract][Full Text] [Related]
4. Mesophilic Argonaute-Mediated Polydisperse Droplet Biosensor for Amplification-Free, One-Pot, and Multiplexed Nucleic Acid Detection Using Deep Learning. Wang Z; Feng N; Zhou Y; Cheng X; Zhou C; Ma A; Wang Q; Li Y; Chen Y Anal Chem; 2024 Feb; 96(5):2068-2077. PubMed ID: 38259216 [TBL] [Abstract][Full Text] [Related]
5. Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea. Kuzmenko A; Yudin D; Ryazansky S; Kulbachinskiy A; Aravin AA Nucleic Acids Res; 2019 Jun; 47(11):5822-5836. PubMed ID: 31114878 [TBL] [Abstract][Full Text] [Related]
6. Sensing of DNA modifications by pAgo proteins in vitro. Beskrovnaia M; Agapov A; Makasheva K; Zharkov DO; Esyunina D; Kulbachinskiy A Biochimie; 2024 May; 220():39-47. PubMed ID: 38128776 [TBL] [Abstract][Full Text] [Related]
7. A machine vision-assisted Argonaute-mediated fluorescence biosensor for the detection of viable Salmonella in food without convoluted DNA extraction and amplification procedures. Zhao J; Han M; Ma A; Jiang F; Chen R; Dong Y; Wang X; Ruan S; Chen Y J Hazard Mater; 2024 Mar; 466():133648. PubMed ID: 38306835 [TBL] [Abstract][Full Text] [Related]
8. Genome manipulation by guide-directed Argonaute cleavage. Huang S; Wang K; Mayo SL Nucleic Acids Res; 2023 May; 51(8):4078-4085. PubMed ID: 36928676 [TBL] [Abstract][Full Text] [Related]
9. DNA targeting and interference by a bacterial Argonaute nuclease. Kuzmenko A; Oguienko A; Esyunina D; Yudin D; Petrova M; Kudinova A; Maslova O; Ninova M; Ryazansky S; Leach D; Aravin AA; Kulbachinskiy A Nature; 2020 Nov; 587(7835):632-637. PubMed ID: 32731256 [TBL] [Abstract][Full Text] [Related]
10. Specific targeting of plasmids with Argonaute enables genome editing. Esyunina D; Okhtienko A; Olina A; Panteleev V; Prostova M; Aravin AA; Kulbachinskiy A Nucleic Acids Res; 2023 May; 51(8):4086-4099. PubMed ID: 36987855 [TBL] [Abstract][Full Text] [Related]
11. Mesophilic Argonaute-Based Single Polystyrene Sphere Aptamer Fluorescence Platform for the Multiplexed and Ultrasensitive Detection of Non-Nucleic Acid Targets. Lu Y; Wen J; Wang C; Wang M; Jiang F; Miao L; Xu M; Li Y; Chen X; Chen Y Small; 2024 May; 20(20):e2308424. PubMed ID: 38081800 [TBL] [Abstract][Full Text] [Related]
12. A dual signal amplification-assisted DNAzyme biosensor for ultrasensitive detection of Argonaute 2 activity. Zhang D; Ma F; Leng J; Zhang CY Chem Commun (Camb); 2018 Dec; 54(97):13678-13681. PubMed ID: 30451248 [TBL] [Abstract][Full Text] [Related]
13. Loosely-packed dynamical structures with partially-melted surface being the key for thermophilic argonaute proteins achieving high DNA-cleavage activity. Zheng L; Lu H; Zan B; Li S; Liu H; Liu Z; Huang J; Liu Y; Jiang F; Liu Q; Feng Y; Hong L Nucleic Acids Res; 2022 Jul; 50(13):7529-7544. PubMed ID: 35766425 [TBL] [Abstract][Full Text] [Related]
14. A label-free DNAzyme fluorescence biosensor for amplified detection of Pb(2+)-based on cleavage-induced G-quadruplex formation. Fu T; Ren S; Gong L; Meng H; Cui L; Kong RM; Zhang XB; Tan W Talanta; 2016 Jan; 147():302-6. PubMed ID: 26592611 [TBL] [Abstract][Full Text] [Related]
15. Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes. Liu M; Chang D; Li Y Acc Chem Res; 2017 Sep; 50(9):2273-2283. PubMed ID: 28805376 [TBL] [Abstract][Full Text] [Related]
16. DNA interference by a mesophilic Argonaute protein, CbcAgo. García-Quintans N; Bowden L; Berenguer J; Mencía M F1000Res; 2019; 8():321. PubMed ID: 32055395 [No Abstract] [Full Text] [Related]
17. Functional Nucleic Acids for Pathogenic Bacteria Detection. Chang D; Zakaria S; Esmaeili Samani S; Chang Y; Filipe CDM; Soleymani L; Brennan JD; Liu M; Li Y Acc Chem Res; 2021 Sep; 54(18):3540-3549. PubMed ID: 34478272 [TBL] [Abstract][Full Text] [Related]
18. A dynamic, ultra-sensitive and "turn-on" strategy for fluorescent detection of uranyl based on DNAzyme and entropy-driven amplification initiated circular cleavage amplification. Yun W; Wu H; Yang Z; Wang R; Wang C; Yang L; Tang Y Anal Chim Acta; 2019 Aug; 1068():104-110. PubMed ID: 31072470 [TBL] [Abstract][Full Text] [Related]
19. An amplifying DNA circuit coupled with Mg Pan J; Liu Z; Chen J Food Chem; 2021 Jun; 346():128975. PubMed ID: 33429296 [TBL] [Abstract][Full Text] [Related]
20. Immobilized-free miniaturized electrochemical sensing system for Pb Cai W; Xie S; Zhang J; Tang D; Tang Y Biosens Bioelectron; 2018 Oct; 117():312-318. PubMed ID: 29929158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]