These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 39052216)
1. Drug Screening Using Normal Cell and Cancer Cell Mixture in an Automated 3D Cell Culture System. Carson MC; Xu P; Gildea JJ; Marino CF; Felder RA Methods Mol Biol; 2024; 2823():95-108. PubMed ID: 39052216 [TBL] [Abstract][Full Text] [Related]
2. Protocol for high throughput 3D drug screening of patient derived melanoma and renal cell carcinoma. Ortiz Jordan LM; Vega VF; Shumate J; Peles A; Zeiger J; Scampavia L; Spicer TP SLAS Discov; 2024 Apr; 29(3):100141. PubMed ID: 38218316 [TBL] [Abstract][Full Text] [Related]
3. 3D modeling in cancer studies. Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350 [TBL] [Abstract][Full Text] [Related]
4. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems. Howes AL; Richardson RD; Finlay D; Vuori K PLoS One; 2014; 9(9):e108283. PubMed ID: 25247711 [TBL] [Abstract][Full Text] [Related]
5. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis. Booij TH; Price LS; Danen EHJ SLAS Discov; 2019 Jul; 24(6):615-627. PubMed ID: 30817892 [TBL] [Abstract][Full Text] [Related]
6. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018 [TBL] [Abstract][Full Text] [Related]
7. A Novel 3D In Vitro Platform for Pre-Clinical Investigations in Drug Testing, Gene Therapy, and Immuno-oncology. Candini O; Grisendi G; Foppiani EM; Brogli M; Aramini B; Masciale V; Spano C; Petrachi T; Veronesi E; Conte P; Mari G; Dominici M Sci Rep; 2019 May; 9(1):7154. PubMed ID: 31073193 [TBL] [Abstract][Full Text] [Related]
8. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Schuster B; Junkin M; Kashaf SS; Romero-Calvo I; Kirby K; Matthews J; Weber CR; Rzhetsky A; White KP; Tay S Nat Commun; 2020 Oct; 11(1):5271. PubMed ID: 33077832 [TBL] [Abstract][Full Text] [Related]
9. In vitro throughput screening of anticancer drugs using patient-derived cell lines cultured on vascularized three-dimensional stromal tissues. Takahashi Y; Morimura R; Tsukamoto K; Gomi S; Yamada A; Mizukami M; Naito Y; Irie S; Nagayama S; Shinozaki E; Yamaguchi K; Fujita N; Kitano S; Katayama R; Matsusaki M Acta Biomater; 2024 Jul; 183():111-129. PubMed ID: 38801868 [TBL] [Abstract][Full Text] [Related]
10. Automation of 3D cell culture using chemically defined hydrogels. Rimann M; Angres B; Patocchi-Tenzer I; Braum S; Graf-Hausner U J Lab Autom; 2014 Apr; 19(2):191-7. PubMed ID: 24132162 [TBL] [Abstract][Full Text] [Related]
11. Recapitulating Tumor Microenvironment Using AXTEX-4DTM for Accelerating Cancer Research and Drug Screening. Baru A; Mazumder S; Kundu PK; Sharma S; Das Purkayastha BP; Khan S; Gupta R; Mehrotra Arora N Asian Pac J Cancer Prev; 2022 Feb; 23(2):561-571. PubMed ID: 35225469 [TBL] [Abstract][Full Text] [Related]
12. Automating a Magnetic 3D Spheroid Model Technology for High-Throughput Screening. Baillargeon P; Shumate J; Hou S; Fernandez-Vega V; Marques N; Souza G; Seldin J; Spicer TP; Scampavia L SLAS Technol; 2019 Aug; 24(4):420-428. PubMed ID: 31225974 [TBL] [Abstract][Full Text] [Related]
14. Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model. Diekjürgen D; Grainger DW Pflugers Arch; 2018 Sep; 470(9):1311-1323. PubMed ID: 29744639 [TBL] [Abstract][Full Text] [Related]
15. A 1536-Well 3D Viability Assay to Assess the Cytotoxic Effect of Drugs on Spheroids. Madoux F; Tanner A; Vessels M; Willetts L; Hou S; Scampavia L; Spicer TP SLAS Discov; 2017 Jun; 22(5):516-524. PubMed ID: 28346088 [TBL] [Abstract][Full Text] [Related]
16. 3D cell cultures toward quantitative high-throughput drug screening. Wang Y; Jeon H Trends Pharmacol Sci; 2022 Jul; 43(7):569-581. PubMed ID: 35504760 [TBL] [Abstract][Full Text] [Related]
17. [Spheroids to organoids: Solid cancer models for anticancer drug discovery]. Alzeeb G; Corcos L; Le Jossic-Corcos C Bull Cancer; 2022 Jan; 109(1):49-57. PubMed ID: 34848046 [TBL] [Abstract][Full Text] [Related]
18. High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells. Hongisto V; Jernström S; Fey V; Mpindi JP; Kleivi Sahlberg K; Kallioniemi O; Perälä M PLoS One; 2013; 8(10):e77232. PubMed ID: 24194875 [TBL] [Abstract][Full Text] [Related]
19. Protocol for quantifying drug sensitivity in 3D patient-derived ovarian cancer models. Labrosse KB; Lombardo FC; Rimmer N; Núñez López M; Fedier A; Heinzelmann-Schwarz V; Coelho R; Jacob F STAR Protoc; 2024 Sep; 5(3):103274. PubMed ID: 39172645 [TBL] [Abstract][Full Text] [Related]
20. Dynamic Culture Systems and 3D Interfaces Models for Cancer Drugs Testing. Fernandes DC; Canadas RF; Reis RL; Oliveira JM Adv Exp Med Biol; 2020; 1230():137-159. PubMed ID: 32285369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]