These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 39052218)
1. A Tip-Based Workflow for Sensitive IMAC-Based Low Nanogram Level Phosphoproteomics. Tsai CF; Hsu CC; Wang YT; Kim H; Liu T Methods Mol Biol; 2024; 2823():129-140. PubMed ID: 39052218 [TBL] [Abstract][Full Text] [Related]
2. A streamlined tandem tip-based workflow for sensitive nanoscale phosphoproteomics. Tsai CF; Wang YT; Hsu CC; Kitata RB; Chu RK; Velickovic M; Zhao R; Williams SM; Chrisler WB; Jorgensen ML; Moore RJ; Zhu Y; Rodland KD; Smith RD; Wasserfall CH; Shi T; Liu T Commun Biol; 2023 Jan; 6(1):70. PubMed ID: 36653408 [TBL] [Abstract][Full Text] [Related]
3. TIMAHAC: Streamlined Tandem IMAC-HILIC Workflow for Simultaneous and High-Throughput Plant Phosphoproteomics and N-glycoproteomics. Chen CW; Lin PY; Lai YM; Lin MH; Lin SY; Hsu CC Mol Cell Proteomics; 2024 May; 23(5):100762. PubMed ID: 38608839 [TBL] [Abstract][Full Text] [Related]
9. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815 [TBL] [Abstract][Full Text] [Related]
10. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides. Wu HT; Hsu CC; Tsai CF; Lin PC; Lin CC; Chen YJ Proteomics; 2011 Jul; 11(13):2639-53. PubMed ID: 21630456 [TBL] [Abstract][Full Text] [Related]
11. Optimized Workflow for Proteomics and Phosphoproteomics With Limited Tissue Samples. Hu M; Wang Y Curr Protoc; 2024 Apr; 4(4):e1028. PubMed ID: 38646944 [TBL] [Abstract][Full Text] [Related]
12. RUPE-phospho: Rapid Ultrasound-Assisted Peptide-Identification-Enhanced Phosphoproteomics Workflow for Microscale Samples. Huang Y; Shao X; Liu Y; Yan K; Ying W; He F; Wang D Anal Chem; 2023 Dec; 95(49):17974-17980. PubMed ID: 38011496 [TBL] [Abstract][Full Text] [Related]
14. Suspension Trapping-Based Sample Preparation Workflow for In-Depth Plant Phosphoproteomics. Chen CW; Tsai CF; Lin MH; Lin SY; Hsu CC Anal Chem; 2023 Aug; 95(33):12232-12239. PubMed ID: 37552764 [TBL] [Abstract][Full Text] [Related]
15. Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Zhou H; Ye M; Dong J; Corradini E; Cristobal A; Heck AJ; Zou H; Mohammed S Nat Protoc; 2013 Mar; 8(3):461-80. PubMed ID: 23391890 [TBL] [Abstract][Full Text] [Related]
16. Enrichment Strategies in Phosphoproteomics. Leitner A Methods Mol Biol; 2016; 1355():105-21. PubMed ID: 26584921 [TBL] [Abstract][Full Text] [Related]
17. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides. Thingholm TE; Larsen MR Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924 [TBL] [Abstract][Full Text] [Related]
18. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry. Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783 [TBL] [Abstract][Full Text] [Related]
19. Pilot investigation of magnetic nanoparticle-based immobilized metal affinity chromatography for efficient enrichment of phosphoproteoforms for mass spectrometry-based top-down proteomics. Wang Q; Fang F; Sun L Anal Bioanal Chem; 2023 Jul; 415(18):4521-4531. PubMed ID: 37017721 [TBL] [Abstract][Full Text] [Related]
20. Development of an enrichment method for endogenous phosphopeptide characterization in human serum. La Barbera G; Capriotti AL; Cavaliere C; Ferraris F; Laus M; Piovesana S; Sparnacci K; Laganà A Anal Bioanal Chem; 2018 Jan; 410(3):1177-1185. PubMed ID: 29318361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]