These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39052615)

  • 1. Effect of ultrasonic surface impact on the microstructural characterization and mechanical properties of 316L austenitic stainless steel.
    Zhu J; Zhuang ML; Qi Y; Chen B; Cao X
    PLoS One; 2024; 19(7):e0307400. PubMed ID: 39052615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.
    Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H
    Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of ultrafine-grained structure on the mechanical properties and biocompatibility of austenitic stainless steels.
    Rybalchenko OV; Anisimova NY; Kiselevsky MV; Belyakov AN; Tokar AA; Terent'ev VF; Prosvirnin DV; Rybalchenko GV; Raab GI; Dobatkin SV
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1460-1468. PubMed ID: 31617961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material.
    Frattolin J; Roy R; Rajagopalan S; Walsh M; Yue S; Bertrand OF; Mongrain R
    Acta Biomater; 2019 Nov; 99():479-494. PubMed ID: 31449928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.
    Čapek J; Machová M; Fousová M; Kubásek J; Vojtěch D; Fojt J; Jablonská E; Lipov J; Ruml T
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():631-9. PubMed ID: 27612756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.
    Ataollahi Oshkour A; Pramanik S; Mehrali M; Yau YH; Tarlochan F; Abu Osman NA
    J Mech Behav Biomed Mater; 2015 Sep; 49():321-31. PubMed ID: 26072197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable Martensite Transformation and Strain-Controlled Fatigue Behavior of a Gradient Nanostructured Austenite Stainless Steel.
    Lei Y; Xu J; Wang Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path.
    Liu X; Zhang S; Bao Y; Zhang Z; Yue Z
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue Strength Improvement of Laser-Directed Energy Deposition 316L Stainless Steel with In Situ Ultrasonic Rolling by Preliminary Investigation.
    Liu G; Su Y; Pi X; Liu D; Lin Y
    Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding.
    Proust G; Retraint D; Chemkhi M; Roos A; Demangel C
    Microsc Microanal; 2015 Aug; 21(4):919-26. PubMed ID: 26139391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An assessment of ultra fine grained 316L stainless steel for implant applications.
    Muley SV; Vidvans AN; Chaudhari GP; Udainiya S
    Acta Biomater; 2016 Jan; 30():408-419. PubMed ID: 26518104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Characterization of Fatigue Damage of 316L Stainless Steel Parts Formed by Selective Laser Melting with Harmonic Generation Technique.
    Qiao R; Yan X
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanism for the enhanced attachment and proliferation of fibroblasts on anodized 316L stainless steel with nano-pit arrays.
    Ni S; Sun L; Ercan B; Liu L; Ziemer K; Webster TJ
    J Biomed Mater Res B Appl Biomater; 2014 Aug; 102(6):1297-303. PubMed ID: 24610894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel.
    Krawczynska AT; Lewandowska M; Pippan R; Kurzydlowski KJ
    J Nanosci Nanotechnol; 2013 May; 13(5):3246-9. PubMed ID: 23858838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM).
    Wang Z; Yang S; Huang Y; Fan C; Peng Z; Gao Z
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of passivation and electropolishing on the performance of medical grade stainless steels in static and fatigue loading.
    Weldon LM; McHugh PE; Carroll W; Costello E; O'Bradaigh C
    J Mater Sci Mater Med; 2005 Feb; 16(2):107-17. PubMed ID: 15744598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver-tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications.
    Alias R; Mahmoodian R; Genasan K; Vellasamy KM; Hamdi Abd Shukor M; Kamarul T
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110304. PubMed ID: 31761210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser surface modification of 316L stainless steel.
    Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new stainless steel alloy for surgical implants compared to 316 S12.
    Smethurst E
    Biomaterials; 1981 Apr; 2(2):116-9. PubMed ID: 7248423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P2000 - A high-nitrogen austenitic steel for application in bone surgery.
    Becerikli M; Jaurich H; Wallner C; Wagner JM; Dadras M; Jettkant B; Pöhl F; Seifert M; Jung O; Mitevski B; Karkar A; Lehnhardt M; Fischer A; Kauther MD; Behr B
    PLoS One; 2019; 14(3):e0214384. PubMed ID: 30913254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.