These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 39052833)
1. Coordination engineering for iron-based hexacyanoferrate as a high-stability cathode for sodium-ion batteries. Zhong J; Xia L; Chen S; Zhang Z; Pei Y; Chen H; Sun H; Zhu J; Lu B; Zhang Y Proc Natl Acad Sci U S A; 2024 Jul; 121(31):e2319193121. PubMed ID: 39052833 [TBL] [Abstract][Full Text] [Related]
2. Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries. Luo J; Sun S; Peng J; Liu B; Huang Y; Wang K; Zhang Q; Li Y; Jin Y; Liu Y; Qiu Y; Li Q; Han J; Huang Y ACS Appl Mater Interfaces; 2017 Aug; 9(30):25317-25322. PubMed ID: 28691793 [TBL] [Abstract][Full Text] [Related]
3. Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Liu Y; Fan S; Gao Y; Liu Y; Zhang H; Chen J; Chen X; Huang J; Liu X; Li L; Qiao Y; Chou S Small; 2023 Oct; 19(43):e2302687. PubMed ID: 37376874 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous Tailoring of Chemical Composition and Morphology Configuration in Metal Hexacyanoferrate for Ultrafast and Durable Sodium-Ion Storage. Cheng H; Xu H; Shang J; Xu Y; Zong H; Yao W; Fang Z; Dou W; Zhang L; Tang Y Angew Chem Int Ed Engl; 2024 Sep; ():e202414302. PubMed ID: 39289836 [TBL] [Abstract][Full Text] [Related]
5. High-Entropy and Component Stoichiometry Tuning Strategies Boost the Sodium-Ion Storage Performance of Cobalt-Free Prussian Blue Analogues Cathode Materials. Lin YT; Niu BT; Wang ZH; Li YX; Xu YP; Liu SW; Chen YX; Lin XM Molecules; 2024 Sep; 29(19):. PubMed ID: 39407489 [TBL] [Abstract][Full Text] [Related]
6. Defect-Healing Induced Monoclinic Iron-Based Prussian Blue Analogs as High-Performance Cathode Materials for Sodium-Ion Batteries. Peng J; Huang J; Gao Y; Qiao Y; Dong H; Liu Y; Li L; Wang J; Dou S; Chou S Small; 2023 Sep; 19(36):e2300435. PubMed ID: 37166020 [TBL] [Abstract][Full Text] [Related]
7. Iron-Vanadium Incorporated Ferrocyanides as Potential Cathode Materials for Application in Sodium-Ion Batteries. Nguyen TP; Kim IT Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984928 [TBL] [Abstract][Full Text] [Related]
8. Improved Reversible Capacity and Cycling Stability by Linear (N=O) Anions in Fe[Fe(CN) Han Q; Hu Y; Gao S; Yang Z; Liu X; Wang C; Han J ChemSusChem; 2023 Oct; 16(20):e202300823. PubMed ID: 37552229 [TBL] [Abstract][Full Text] [Related]
9. Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries. Zhou Q; Liu HK; Dou SX; Chong S ACS Nano; 2024 Mar; 18(9):7287-7297. PubMed ID: 38373205 [TBL] [Abstract][Full Text] [Related]
10. Highly Crystalline Multivariate Prussian Blue Analogs via Equilibrium Chelation Strategy for Stable and Fast Charging Sodium-Ion Batteries. Wang Y; Liu J; Jiang N; Yang J; Yang C; Liu Y Small; 2024 Nov; 20(44):e2403211. PubMed ID: 38958082 [TBL] [Abstract][Full Text] [Related]
11. In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries. Xu Y; Chang M; Fang C; Liu Y; Qiu Y; Ou M; Peng J; Wei P; Deng Z; Sun S; Sun X; Li Q; Han J; Huang Y ACS Appl Mater Interfaces; 2019 Aug; 11(33):29985-29992. PubMed ID: 31364834 [TBL] [Abstract][Full Text] [Related]
12. The Effect of Ni Doping on FeOF Cathode Material for High-Performance Sodium-Ion Batteries. Yun B; Maulana AY; Lee D; Song J; Futalan CM; Moon D; Kim J Small; 2024 Jun; 20(23):e2308011. PubMed ID: 38152965 [TBL] [Abstract][Full Text] [Related]
13. Hollow Layered Iron-Based Prussian Blue Cathode with Reduced Defects for High-Performance Sodium-Ion Batteries. Wang CC; Zhang LL; Fu XY; Sun HB; Yang XL ACS Appl Mater Interfaces; 2024 Apr; 16(15):18959-18970. PubMed ID: 38569111 [TBL] [Abstract][Full Text] [Related]
14. Ultra-Fast-Charging, Long-Duration, and Wide-Temperature-Range Sodium Storage Enabled by Multiwalled Carbon Nanotube-Hybridized Biphasic Polyanion-Type Phosphate Cathode Materials. Ma WL; Zhou Y; Zhao XW; Cao X; Wu P; Zhu XS; Wei SH; Sun K; Zhou H; Zhou YM ACS Appl Mater Interfaces; 2024 Jul; 16(27):34819-34829. PubMed ID: 38924763 [TBL] [Abstract][Full Text] [Related]
15. Monoclinic Bimetallic Prussian Blue Analog Cathode with High Capacity and Long Life for Advanced Sodium Storage. Shen L; Jiang Y; Jiang Y; Ma J; Yang K; Ma H; Liu Q; Zhu N ACS Appl Mater Interfaces; 2022 Jun; 14(21):24332-24340. PubMed ID: 35604045 [TBL] [Abstract][Full Text] [Related]
16. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278 [TBL] [Abstract][Full Text] [Related]
17. A Chemical Precipitation Method Preparing Hollow-Core-Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries. Huang Y; Xie M; Wang Z; Jiang Y; Yao Y; Li S; Li Z; Li L; Wu F; Chen R Small; 2018 Jul; 14(28):e1801246. PubMed ID: 29882323 [TBL] [Abstract][Full Text] [Related]
18. Na Xu CM; Peng J; Liu XH; Lai WH; He XX; Yang Z; Wang JZ; Qiao Y; Li L; Chou SL Small Methods; 2022 Aug; 6(8):e2200404. PubMed ID: 35730654 [TBL] [Abstract][Full Text] [Related]
19. Capacitive-Controlled Prussian White with a Nickel Iron Hexacyanoferrate Composite Cathode for Rapid Sodium Diffusion. Wang Z; Sougrati MT; Zheng Q; Ge R; Wang J ACS Appl Mater Interfaces; 2024 Apr; 16(15):18908-18917. PubMed ID: 38591796 [TBL] [Abstract][Full Text] [Related]
20. P-doped spherical hard carbon with high initial coulombic efficiency and enhanced capacity for sodium ion batteries. Liu ZG; Zhao J; Yao H; He XX; Zhang H; Qiao Y; Wu XQ; Li L; Chou SL Chem Sci; 2024 Jun; 15(22):8478-8487. PubMed ID: 38846387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]