These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks. Barfeld SJ; Urbanucci A; Itkonen HM; Fazli L; Hicks JL; Thiede B; Rennie PS; Yegnasubramanian S; DeMarzo AM; Mills IG EBioMedicine; 2017 Apr; 18():83-93. PubMed ID: 28412251 [TBL] [Abstract][Full Text] [Related]
5. NDRG2 acts as a negative regulator downstream of androgen receptor and inhibits the growth of androgen-dependent and castration-resistant prostate cancer. Yu C; Wu G; Li R; Gao L; Yang F; Zhao Y; Zhang J; Zhang R; Zhang J; Yao L; Yuan J; Li X Cancer Biol Ther; 2015; 16(2):287-96. PubMed ID: 25756511 [TBL] [Abstract][Full Text] [Related]
6. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Maina PK; Shao P; Liu Q; Fazli L; Tyler S; Nasir M; Dong X; Qi HH Oncotarget; 2016 Nov; 7(46):75585-75602. PubMed ID: 27689328 [TBL] [Abstract][Full Text] [Related]
7. MAPK4 promotes prostate cancer by concerted activation of androgen receptor and AKT. Shen T; Wang W; Zhou W; Coleman I; Cai Q; Dong B; Ittmann MM; Creighton CJ; Bian Y; Meng Y; Rowley DR; Nelson PS; Moore DD; Yang F J Clin Invest; 2021 Feb; 131(4):. PubMed ID: 33586682 [TBL] [Abstract][Full Text] [Related]
8. Integrative analysis of ultra-deep RNA-seq reveals alternative promoter usage as a mechanism of activating oncogenic programmes during prostate cancer progression. Zhang M; Sjöström M; Cui X; Foye A; Farh K; Shrestha R; Lundberg A; Dang HX; Li H; Febbo PG; Aggarwal R; Alumkal JJ; Small EJ; ; Maher CA; Feng FY; Quigley DA Nat Cell Biol; 2024 Jul; 26(7):1176-1186. PubMed ID: 38871824 [TBL] [Abstract][Full Text] [Related]
10. The androgen receptor-lncRNASAT1-AKT-p15 axis mediates androgen-induced cellular senescence in prostate cancer cells. Mirzakhani K; Kallenbach J; Rasa SMM; Ribaudo F; Ungelenk M; Ehsani M; Gong W; Gassler N; Leeder M; Grimm MO; Neri F; Baniahmad A Oncogene; 2022 Feb; 41(7):943-959. PubMed ID: 34667276 [TBL] [Abstract][Full Text] [Related]
11. Scaffold attachment factor B1 regulates the androgen receptor in concert with the growth inhibitory kinase MST1 and the methyltransferase EZH2. Mukhopadhyay NK; Kim J; You S; Morello M; Hager MH; Huang WC; Ramachandran A; Yang J; Cinar B; Rubin MA; Adam RM; Oesterreich S; Di Vizio D; Freeman MR Oncogene; 2014 Jun; 33(25):3235-45. PubMed ID: 23893242 [TBL] [Abstract][Full Text] [Related]
12. A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Bai S; Cao S; Jin L; Kobelski M; Schouest B; Wang X; Ungerleider N; Baddoo M; Zhang W; Corey E; Vessella RL; Dong X; Zhang K; Yu X; Flemington EK; Dong Y Oncogene; 2019 Jun; 38(25):4977-4989. PubMed ID: 30820039 [TBL] [Abstract][Full Text] [Related]
14. RELA is sufficient to mediate interleukin-1 repression of androgen receptor expression and activity in an LNCaP disease progression model. Thomas-Jardin SE; Dahl H; Kanchwala MS; Ha F; Jacob J; Soundharrajan R; Bautista M; Nawas AF; Robichaux D; Mistry R; Anunobi V; Xing C; Delk NA Prostate; 2020 Feb; 80(2):133-145. PubMed ID: 31730277 [TBL] [Abstract][Full Text] [Related]
15. Angiogenin mediates androgen-stimulated prostate cancer growth and enables castration resistance. Li S; Hu MG; Sun Y; Yoshioka N; Ibaragi S; Sheng J; Sun G; Kishimoto K; Hu GF Mol Cancer Res; 2013 Oct; 11(10):1203-14. PubMed ID: 23851444 [TBL] [Abstract][Full Text] [Related]
16. MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Qiu X; Boufaied N; Hallal T; Feit A; de Polo A; Luoma AM; Alahmadi W; Larocque J; Zadra G; Xie Y; Gu S; Tang Q; Zhang Y; Syamala S; Seo JH; Bell C; O'Connor E; Liu Y; Schaeffer EM; Jeffrey Karnes R; Weinmann S; Davicioni E; Morrissey C; Cejas P; Ellis L; Loda M; Wucherpfennig KW; Pomerantz MM; Spratt DE; Corey E; Freedman ML; Shirley Liu X; Brown M; Long HW; Labbé DP Nat Commun; 2022 May; 13(1):2559. PubMed ID: 35562350 [TBL] [Abstract][Full Text] [Related]
17. Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Vatapalli R; Sagar V; Rodriguez Y; Zhao JC; Unno K; Pamarthy S; Lysy B; Anker J; Han H; Yoo YA; Truica M; Chalmers ZR; Giles F; Yu J; Chakravarti D; Carneiro B; Abdulkadir SA Nat Commun; 2020 Aug; 11(1):4153. PubMed ID: 32814769 [TBL] [Abstract][Full Text] [Related]
18. Dissecting transcription of the 8q24-MYC locus in prostate cancer recognizes the equilibration between androgen receptor direct and indirect dual-functions. Guo J; Wei Z; Jia T; Wang L; Nama N; Liang J; Liao X; Liu X; Gao Y; Liu X; Wang K; Fu B; Chen SS J Transl Med; 2023 Oct; 21(1):716. PubMed ID: 37828515 [TBL] [Abstract][Full Text] [Related]
19. Lipocalin 2 over-expression facilitates progress of castration-resistant prostate cancer via improving androgen receptor transcriptional activity. Ding G; Wang J; Feng C; Jiang H; Xu J; Ding Q Oncotarget; 2016 Sep; 7(39):64309-64317. PubMed ID: 27602760 [TBL] [Abstract][Full Text] [Related]
20. Identification of novel genes that regulate androgen receptor signaling and growth of androgen-deprived prostate cancer cells. Levina E; Ji H; Chen M; Baig M; Oliver D; Ohouo P; Lim CU; Schools G; Carmack S; Ding Y; Broude EV; Roninson IB; Buttyan R; Shtutman M Oncotarget; 2015 May; 6(15):13088-104. PubMed ID: 26036626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]