These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 39053044)
1. Probiotics in addressing heavy metal toxicities in fish farming: Current progress and perspective. Giri SS; Kim HJ; Jung WJ; Bin Lee S; Joo SJ; Gupta SK; Park SC Ecotoxicol Environ Saf; 2024 Sep; 282():116755. PubMed ID: 39053044 [TBL] [Abstract][Full Text] [Related]
2. Heavy metals (HMs) pollution in the aquatic environment: Role of probiotics and gut microbiota in HMs remediation. Kakade A; Sharma M; Salama ES; Zhang P; Zhang L; Xing X; Yue J; Song Z; Nan L; Yujun S; Li X Environ Res; 2023 Apr; 223():115186. PubMed ID: 36586709 [TBL] [Abstract][Full Text] [Related]
3. Probiotics: a Promising Generation of Heavy Metal Detoxification. Abdel-Megeed RM Biol Trace Elem Res; 2021 Jun; 199(6):2406-2413. PubMed ID: 32821997 [TBL] [Abstract][Full Text] [Related]
4. Probiotics and gut microbiome - Prospects and challenges in remediating heavy metal toxicity. Arun KB; Madhavan A; Sindhu R; Emmanual S; Binod P; Pugazhendhi A; Sirohi R; Reshmy R; Awasthi MK; Gnansounou E; Pandey A J Hazard Mater; 2021 Oct; 420():126676. PubMed ID: 34329091 [TBL] [Abstract][Full Text] [Related]
5. Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy. Duan H; Yu L; Tian F; Zhai Q; Fan L; Chen W Sci Total Environ; 2020 Nov; 742():140429. PubMed ID: 32629250 [TBL] [Abstract][Full Text] [Related]
6. Impact of Heavy Metal Toxicity on the Gut Microbiota and Its Relationship with Metabolites andĀ Future Probiotics Strategy: a Review. Bist P; Choudhary S Biol Trace Elem Res; 2022 Dec; 200(12):5328-5350. PubMed ID: 34994948 [TBL] [Abstract][Full Text] [Related]
7. Bioaccumulation and Bioremediation of Heavy Metals in Fishes-A Review. Jamil Emon F; Rohani MF; Sumaiya N; Tuj Jannat MF; Akter Y; Shahjahan M; Abdul Kari Z; Tahiluddin AB; Goh KW Toxics; 2023 Jun; 11(6):. PubMed ID: 37368610 [TBL] [Abstract][Full Text] [Related]
8. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Monachese M; Burton JP; Reid G Appl Environ Microbiol; 2012 Sep; 78(18):6397-404. PubMed ID: 22798364 [TBL] [Abstract][Full Text] [Related]
9. A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Feng P; Ye Z; Kakade A; Virk AK; Li X; Liu P Nutrients; 2018 Dec; 11(1):. PubMed ID: 30577661 [TBL] [Abstract][Full Text] [Related]
10. A review on heavy metal-induced toxicity in fishes: Bioaccumulation, antioxidant defense system, histopathological manifestations, and transcriptional profiling of genes. Kumar M; Singh S; Jain A; Yadav S; Dubey A; Trivedi SP J Trace Elem Med Biol; 2024 May; 83():127377. PubMed ID: 38183919 [TBL] [Abstract][Full Text] [Related]
11. Cadmium induced bioaccumulation, histopathology, gene regulation in fish and its amelioration - A review. Das S; Kar I; Patra AK J Trace Elem Med Biol; 2023 Sep; 79():127202. PubMed ID: 37263063 [TBL] [Abstract][Full Text] [Related]
12. Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. Dahiya P; Kumari S; Behl M; Kashyap A; Kumari D; Thakur K; Devi M; Kumari N; Kaushik N; Walia A; Bhatt AK; Bhatia RK Probiotics Antimicrob Proteins; 2024 May; ():. PubMed ID: 38733461 [TBL] [Abstract][Full Text] [Related]
13. In vivo induction of antioxidant response and oxidative stress associated with genotoxicity and histopathological alteration in two commercial fish species due to heavy metals exposure in northern India (Kali) river. Fatima M; Usmani N; Firdaus F; Zafeer MF; Ahmad S; Akhtar K; Dawar Husain SM; Ahmad MH; Anis E; Mobarak Hossain M Comp Biochem Physiol C Toxicol Pharmacol; 2015; 176-177():17-30. PubMed ID: 26191657 [TBL] [Abstract][Full Text] [Related]
14. Potential probiotic strains with heavy metals and mycotoxins bioremoval capacity for application in foodstuffs. Massoud R; Zoghi A J Appl Microbiol; 2022 Sep; 133(3):1288-1307. PubMed ID: 35751476 [TBL] [Abstract][Full Text] [Related]
15. The functionality of probiotics in aquaculture: An overview. El-Saadony MT; Alagawany M; Patra AK; Kar I; Tiwari R; Dawood MAO; Dhama K; Abdel-Latif HMR Fish Shellfish Immunol; 2021 Oct; 117():36-52. PubMed ID: 34274422 [TBL] [Abstract][Full Text] [Related]
16. Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. Gatesoupe FJ J Mol Microbiol Biotechnol; 2008; 14(1-3):107-14. PubMed ID: 17957117 [TBL] [Abstract][Full Text] [Related]
17. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. Luo L; Ke C; Guo X; Shi B; Huang M Fish Shellfish Immunol; 2014 Jun; 38(2):318-29. PubMed ID: 24698996 [TBL] [Abstract][Full Text] [Related]
19. The advancement of probiotics research and its application in fish farming industries. Banerjee G; Ray AK Res Vet Sci; 2017 Dec; 115():66-77. PubMed ID: 28157611 [TBL] [Abstract][Full Text] [Related]
20. Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Zhai Q; Yu L; Li T; Zhu J; Zhang C; Zhao J; Zhang H; Chen W Antonie Van Leeuwenhoek; 2017 Apr; 110(4):501-513. PubMed ID: 28028640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]