These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39053334)

  • 41. Contactless facial video recording with deep learning models for the detection of atrial fibrillation.
    Sun Y; Yang YY; Wu BJ; Huang PW; Cheng SE; Wu BF; Chen CC
    Sci Rep; 2022 Jan; 12(1):281. PubMed ID: 34996908
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of Remote Photoplethysmography Measurement Conditions toward Telemedicine Applications.
    Tohma A; Nishikawa M; Hashimoto T; Yamazaki Y; Sun G
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Remote Photoplethysmography with a High-Speed Camera Reveals Temporal and Amplitude Differences between Glabrous and Non-Glabrous Skin.
    Cao M; Burton T; Saiko G; Douplik A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679411
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-Stage Motion Artifact Reduction Algorithm for rPPG Signals Obtained from Facial Video Recordings.
    Abdulrahaman LQ
    Arab J Sci Eng; 2023 Apr; ():1-9. PubMed ID: 37361465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pulse Rate Variability Analysis Using Remote Photoplethysmography Signals.
    Yu SG; Kim SE; Kim NH; Suh KH; Lee EC
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577448
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-Contact Vision-Based Techniques of Vital Sign Monitoring: Systematic Review.
    Saikevičius L; Raudonis V; Dervinis G; Baranauskas V
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931747
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cost-Effective Solution of Remote Photoplethysmography Capable of Real-Time, Multi-Subject Monitoring with Social Distancing.
    Huang HW; Rupp P; Chen J; Kemkar A; Khandelwal N; Ballinger I; Chai P; Traverso G
    Proc IEEE Sens; 2022; 2022():. PubMed ID: 36570065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic Region of Interest Selection in Remote Photoplethysmography: Proof-of-Concept Study.
    Kiddle A; Barham H; Wegerif S; Petronzio C
    JMIR Form Res; 2023 Mar; 7():e44575. PubMed ID: 36995742
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-contact sensing of neonatal pulse rate using camera-based imaging: a clinical feasibility study.
    Paul M; Karthik S; Joseph J; Sivaprakasam M; Kumutha J; Leonhardt S; Hoog Antink C
    Physiol Meas; 2020 Mar; 41(2):024001. PubMed ID: 32148333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facial Video-Based Remote Physiological Measurement via Self-Supervised Learning.
    Yue Z; Shi M; Ding S
    IEEE Trans Pattern Anal Mach Intell; 2023 Nov; 45(11):13844-13859. PubMed ID: 37490386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Continuous intraoperative perfusion monitoring of free microvascular anastomosed fasciocutaneous flaps using remote photoplethysmography.
    Schraven SP; Kossack B; Strüder D; Jung M; Skopnik L; Gross J; Hilsmann A; Eisert P; Mlynski R; Wisotzky EL
    Sci Rep; 2023 Jan; 13(1):1532. PubMed ID: 36707664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heart rate estimation network from facial videos using spatiotemporal feature image.
    Jaiswal KB; Meenpal T
    Comput Biol Med; 2022 Dec; 151(Pt A):106307. PubMed ID: 36403356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluating RGB channels in remote photoplethysmography: a comparative study with contact-based PPG.
    Ontiveros RC; Elgendi M; Missale G; Menon C
    Front Physiol; 2023; 14():1296277. PubMed ID: 38187134
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shielding facial physiological information in video.
    Zheng K; Shen J; Sun G; Li H; Li Y
    Math Biosci Eng; 2022 Mar; 19(5):5153-5168. PubMed ID: 35430858
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-contact high precision pulse-rate monitoring system for moving subjects in different motion states.
    Zhang Q; Lin X; Zhang Y; Liu Q; Cai F
    Med Biol Eng Comput; 2023 Oct; 61(10):2769-2783. PubMed ID: 37474842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extracting remote photoplethysmogram signal from endoscopy videos for vessel and capillary density recognition.
    Fouladi SH; Balasingham I; Kansanen K; Ramstad TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():227-230. PubMed ID: 28268318
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-invasive methods for heart rate measurement in fish based on photoplethysmography.
    Deng Y; Hu T; Chen J; Zeng J; Yang J; Ke Q; Miao L; Chen Y; Li R; Zhang R; Xu P
    J Exp Biol; 2024 Feb; 227(4):. PubMed ID: 38284767
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cardio-respiratory signal extraction from video camera data for continuous non-contact vital sign monitoring using deep learning.
    Chaichulee S; Villarroel M; Jorge J; Arteta C; McCormick K; Zisserman A; Tarassenko L
    Physiol Meas; 2019 Dec; 40(11):115001. PubMed ID: 31661680
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Camera-Derived Photoplethysmography (rPPG) and Speckle Plethysmography (rSPG): Comparing Reflective and Transmissive Mode at Various Integration Times Using LEDs and Lasers.
    Herranz Olazábal J; Wieringa F; Hermeling E; Van Hoof C
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015822
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancing Stress Detection: A Comprehensive Approach through rPPG Analysis and Deep Learning Techniques.
    Fontes L; Machado P; Vinkemeier D; Yahaya S; Bird JJ; Ihianle IK
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.