These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39053334)

  • 61. Biometric Signals Estimation Using Single Photon Camera and Deep Learning.
    Paracchini M; Marcon M; Villa F; Zappa F; Tubaro S
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120975
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Two-stage approach for detection and reduction of motion artifacts in photoplethysmographic data.
    Krishnan R; Natarajan BB; Warren S
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1867-76. PubMed ID: 20172800
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Robust heart-rate estimation from facial videos using Project_ICA.
    Qi L; Yu H; Xu L; Mpanda RS; Greenwald SE
    Physiol Meas; 2019 Sep; 40(8):085007. PubMed ID: 31479423
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Robust Remote Photoplethysmography Estimation With Environmental Noise Disentanglement.
    Liu SQ; Yuen PC
    IEEE Trans Image Process; 2024; 33():27-41. PubMed ID: 37943637
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Living-Skin Classification via Remote-PPG.
    Wang W; Stuijk S; de Haan G
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2781-2792. PubMed ID: 28278453
    [TBL] [Abstract][Full Text] [Related]  

  • 66. pyVHR: a Python framework for remote photoplethysmography.
    Boccignone G; Conte D; Cuculo V; D'Amelio A; Grossi G; Lanzarotti R; Mortara E
    PeerJ Comput Sci; 2022; 8():e929. PubMed ID: 35494872
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Female sexual responses using signal processing techniques.
    Rafiee J; Rafiee MA; Michaelsen D
    J Sex Med; 2009 Nov; 6(11):3086-96. PubMed ID: 19694930
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A hybrid denoising approach for PPG signals utilizing variational mode decomposition and improved wavelet thresholding.
    Hu Q; Li M; Jiang L; Liu M
    Technol Health Care; 2024; 32(4):2793-2814. PubMed ID: 38517823
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Remote Photoplethysmography Is an Accurate Method to Remotely Measure Respiratory Rate: A Hospital-Based Trial.
    Allado E; Poussel M; Renno J; Moussu A; Hily O; Temperelli M; Albuisson E; Chenuel B
    J Clin Med; 2022 Jun; 11(13):. PubMed ID: 35806932
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A deep learning approach to estimate pulse rate by remote photoplethysmography.
    Lampier LC; Valadão CT; Silva LA; Delisle-Rodríguez D; Caldeira EMO; Bastos-Filho TF
    Physiol Meas; 2022 Jul; 43(7):. PubMed ID: 35728793
    [No Abstract]   [Full Text] [Related]  

  • 71. Conventional and deep learning methods in heart rate estimation from RGB face videos.
    Helwan A; Azar D; Ma'aitah MKS
    Physiol Meas; 2024 Feb; 45(2):. PubMed ID: 38081130
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Towards a Non-Contact Method for Identifying Stress Using Remote Photoplethysmography in Academic Environments.
    Morales-Fajardo HM; Rodríguez-Arce J; Gutiérrez-Cedeño A; Viñas JC; Reyes-Lagos JJ; Abarca-Castro EA; Ledesma-Ramírez CI; Vilchis-González AH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632193
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A study of color illumination effect on the SNR of rPPG signals.
    Yu-Chen Lin ; Yuan-Hsiang Lin
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4301-4304. PubMed ID: 29060848
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Non-Contact, Simple Neonatal Monitoring by Photoplethysmography.
    Cobos-Torres JC; Abderrahim M; Martínez-Orgado J
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544689
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Algorithmic Principles of Remote PPG.
    Wang W; den Brinker AC; Stuijk S; de Haan G
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1479-1491. PubMed ID: 28113245
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Noise Reduction in Photoplethysmography Signals Using a Convolutional Denoising Autoencoder With Unconventional Training Scheme.
    Mohagheghian F; Han D; Ghetia O; Peitzsch A; Nishita N; Pirayesh Shirazi Nejad M; Ding EY; Noorishirazi K; Hamel A; Otabil EM; DiMezza D; Dickson EL; Tran KV; McManus DD; Chon KH
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):456-466. PubMed ID: 37682653
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Face2PPG: An Unsupervised Pipeline for Blood Volume Pulse Extraction From Faces.
    Casado CA; Lopez MB
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5530-5541. PubMed ID: 37610907
    [TBL] [Abstract][Full Text] [Related]  

  • 78. cbPPGGAN: A Generic Enhancement Framework for Unpaired Pulse Waveforms in Camera-Based Photoplethysmography.
    Yang Z; Wang H; Liu B; Lu F
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):598-608. PubMed ID: 37695961
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Improved signal quality indication for photoplethysmographic signals incorporating motion artifact detection.
    Pflugradt M; Orglmeister R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1872-5. PubMed ID: 25570343
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Photoplethysmography for demarcation of cutaneous squamous cell carcinoma.
    Rasmussen SM; Nielsen T; Hody S; Hager H; Schousboe LP
    Sci Rep; 2021 Nov; 11(1):21467. PubMed ID: 34728637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.