These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39053506)

  • 1. Tuning Stopper Size in Multiresponsive [2]Rotaxanes for Fluoride Anion Selective Metastability.
    Jaiswal M; Dasgupta S
    Org Lett; 2024 Aug; 26(31):6776-6781. PubMed ID: 39053506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BP23C7: high-yield synthesis and application in constructing [3]rotaxanes and responsive pseudo[2]rotaxanes.
    Prakashni M; Dasgupta S
    Org Biomol Chem; 2024 Feb; 22(9):1871-1884. PubMed ID: 38349013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of a Crown Ether/Amine-Type Rotaxane as a Probe for the Versatile Detection of Anions and Acids by Thin-Layer Chromatography.
    Miyagawa S; Kimura M; Kagami S; Kawasaki T; Tokunaga Y
    Chem Asian J; 2020 Oct; 15(19):3044-3049. PubMed ID: 32783335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle.
    Řezanka M; Langton MJ; Beer PD
    Chem Commun (Camb); 2015 Mar; 51(21):4499-502. PubMed ID: 25682747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 1,2,3,4,5-pentaphenylferrocene-stoppered rotaxane capable of electrochemical anion recognition.
    Evans NH; Serpell CJ; White NG; Beer PD
    Chemistry; 2011 Oct; 17(44):12347-54. PubMed ID: 21953676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halide selective anion recognition by an amide-triazolium axle containing [2]rotaxane.
    White NG; Colaço AR; Marques I; Félix V; Beer PD
    Org Biomol Chem; 2014 Jul; 12(27):4924-31. PubMed ID: 24876069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halotriazolium axle functionalised [2]rotaxanes for anion recognition: investigating the effects of halogen-bond donor and preorganisation.
    Mercurio JM; Knighton RC; Cookson J; Beer PD
    Chemistry; 2014 Sep; 20(37):11740-9. PubMed ID: 25112862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An all-halogen bonding rotaxane for selective sensing of halides in aqueous media.
    Mullaney BR; Thompson AL; Beer PD
    Angew Chem Int Ed Engl; 2014 Oct; 53(43):11458-62. PubMed ID: 25044414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-phase complexation of polyethers with halide ions.
    Liou CC; Brodbelt JS
    J Am Soc Mass Spectrom; 1993 Mar; 4(3):242-8. PubMed ID: 24234853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong and Selective Halide Anion Binding by Neutral Halogen-Bonding [2]Rotaxanes in Wet Organic Solvents.
    Lim JY; Bunchuay T; Beer PD
    Chemistry; 2017 Apr; 23(19):4700-4707. PubMed ID: 28160507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotaxanes capable of recognising chloride in aqueous media.
    Hancock LM; Gilday LC; Carvalho S; Costa PJ; Félix V; Serpell CJ; Kilah NL; Beer PD
    Chemistry; 2010 Nov; 16(44):13082-94. PubMed ID: 21031371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porphyrin-functionalised rotaxanes for anion recognition.
    Brown A; Beer PD
    Dalton Trans; 2012 Jan; 41(1):118-29. PubMed ID: 22075843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting the 1,2,3-triazolium motif in anion-templated formation of a bromide-selective rotaxane host assembly.
    Mullen KM; Mercurio J; Serpell CJ; Beer PD
    Angew Chem Int Ed Engl; 2009; 48(26):4781-4. PubMed ID: 19452507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subphthalocyanine-Stoppered [2]Rotaxanes: Synthesis and Size/Energy Threshold of Slippage.
    Kage Y; Shimizu S; Kociok-Köhn G; Furuta H; Pantoş GD
    Org Lett; 2020 Feb; 22(3):1096-1101. PubMed ID: 31942791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rotaxane host system containing integrated triazole C-H hydrogen bond donors for anion recognition.
    White NG; Beer PD
    Org Biomol Chem; 2013 Feb; 11(8):1326-33. PubMed ID: 23307098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclodextrin-based size-complementary [3]rotaxanes: selective synthesis and specific dissociation.
    Akae Y; Koyama Y; Kuwata S; Takata T
    Chemistry; 2014 Dec; 20(51):17132-6. PubMed ID: 25351559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calix[4]arene-based rotaxane host systems for anion recognition.
    McConnell AJ; Serpell CJ; Thompson AL; Allan DR; Beer PD
    Chemistry; 2010 Jan; 16(4):1256-64. PubMed ID: 19950342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies exploring the role of anion templation in the slippage formation of rotaxane-like structures.
    McConnell AJ; Beer PD
    Chemistry; 2011 Feb; 17(9):2724-33. PubMed ID: 21264965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodide Recognition and Sensing in Water by a Halogen-Bonding Ruthenium(II)-Based Rotaxane.
    Langton MJ; Marques I; Robinson SW; Félix V; Beer PD
    Chemistry; 2016 Jan; 22(1):185-92. PubMed ID: 26626866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate-selective binding and sensing of a fluorescent [3]rotaxane host system.
    Langton MJ; Beer PD
    Chemistry; 2012 Nov; 18(45):14406-12. PubMed ID: 23033117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.