These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 39053514)
1. Highly specific SARS-CoV-2 main protease (M Rauch S; Costacurta F; Schöppe H; Peng JY; Bante D; Erisoez EE; Sprenger B; He X; Moghadasi SA; Krismer L; Sauerwein A; Heberle A; Rabensteiner T; Wang D; Naschberger A; Dunzendorfer-Matt T; Kaserer T; von Laer D; Heilmann E Antiviral Res; 2024 Nov; 231():105969. PubMed ID: 39053514 [TBL] [Abstract][Full Text] [Related]
2. A comprehensive study of SARS-CoV-2 main protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system. Costacurta F; Dodaro A; Bante D; Schöppe H; Peng JY; Sprenger B; He X; Moghadasi SA; Egger LM; Fleischmann J; Pavan M; Bassani D; Menin S; Rauch S; Krismer L; Sauerwein A; Heberle A; Rabensteiner T; Ho J; Harris RS; Stefan E; Schneider R; Dunzendorfer-Matt T; Naschberger A; Wang D; Kaserer T; Moro S; von Laer D; Heilmann E PLoS Pathog; 2024 Sep; 20(9):e1012522. PubMed ID: 39259728 [TBL] [Abstract][Full Text] [Related]
3. Global prevalence of SARS-CoV-2 3CL protease mutations associated with nirmatrelvir or ensitrelvir resistance. Ip JD; Wing-Ho Chu A; Chan WM; Cheuk-Ying Leung R; Umer Abdullah SM; Sun Y; Kai-Wang To K EBioMedicine; 2023 May; 91():104559. PubMed ID: 37060743 [TBL] [Abstract][Full Text] [Related]
5. Computational Estimation of Residues Involving Resistance to the SARS-CoV-2 Main Protease Inhibitor Ensitrelvir Based on Virtual Alanine Scan of the Active Site. Mizuno A; Nakayoshi T; Kato K; Kurimoto E; Oda A Biol Pharm Bull; 2024; 47(5):967-977. PubMed ID: 38763751 [TBL] [Abstract][Full Text] [Related]
7. Genetic Surveillance of SARS-CoV-2 M Lee JT; Yang Q; Gribenko A; Perrin BS; Zhu Y; Cardin R; Liberator PA; Anderson AS; Hao L mBio; 2022 Aug; 13(4):e0086922. PubMed ID: 35862764 [TBL] [Abstract][Full Text] [Related]
8. Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 main protease. Noske GD; de Souza Silva E; de Godoy MO; Dolci I; Fernandes RS; Guido RVC; Sjö P; Oliva G; Godoy AS J Biol Chem; 2023 Mar; 299(3):103004. PubMed ID: 36775130 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir. Duan Y; Zhou H; Liu X; Iketani S; Lin M; Zhang X; Bian Q; Wang H; Sun H; Hong SJ; Culbertson B; Mohri H; Luck MI; Zhu Y; Liu X; Lu Y; Yang X; Yang K; Sabo Y; Chavez A; Goff SP; Rao Z; Ho DD; Yang H Nature; 2023 Oct; 622(7982):376-382. PubMed ID: 37696289 [TBL] [Abstract][Full Text] [Related]
10. Ensitrelvir is effective against SARS-CoV-2 3CL protease mutants circulating globally. Kawashima S; Matsui Y; Adachi T; Morikawa Y; Inoue K; Takebayashi S; Nobori H; Rokushima M; Tachibana Y; Kato T Biochem Biophys Res Commun; 2023 Feb; 645():132-136. PubMed ID: 36689809 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive study of SARS-CoV-2 main protease (M Costacurta F; Dodaro A; Bante D; Schöppe H; Sprenger B; Moghadasi SA; Fleischmann J; Pavan M; Bassani D; Menin S; Rauch S; Krismer L; Sauerwein A; Heberle A; Rabensteiner T; Ho J; Harris RS; Stefan E; Schneider R; Kaserer T; Moro S; von Laer D; Heilmann E bioRxiv; 2023 Oct; ():. PubMed ID: 37808638 [TBL] [Abstract][Full Text] [Related]
12. Exploring epigenetic drugs as potential inhibitors of SARS-CoV-2 main protease: a docking and MD simulation study. Uzuner U; Akkus E; Kocak A; Çelik Uzuner S J Biomol Struct Dyn; 2024 Aug; 42(13):6892-6903. PubMed ID: 37458994 [TBL] [Abstract][Full Text] [Related]
15. Predicting Antiviral Resistance Mutations in SARS-CoV-2 Main Protease with Computational and Experimental Screening. Sasi VM; Ullrich S; Ton J; Fry SE; Johansen-Leete J; Payne RJ; Nitsche C; Jackson CJ Biochemistry; 2022 Nov; 61(22):2495-2505. PubMed ID: 36326185 [TBL] [Abstract][Full Text] [Related]
16. Efficacy comparison of 3CL protease inhibitors ensitrelvir and nirmatrelvir against SARS-CoV-2 in vitro and in vivo. Kuroda T; Nobori H; Fukao K; Baba K; Matsumoto K; Yoshida S; Tanaka Y; Watari R; Oka R; Kasai Y; Inoue K; Kawashima S; Shimba A; Hayasaki-Kajiwara Y; Tanimura M; Zhang Q; Tachibana Y; Kato T; Shishido T J Antimicrob Chemother; 2023 Apr; 78(4):946-952. PubMed ID: 36760083 [TBL] [Abstract][Full Text] [Related]
17. Sporadic Occurrence of Ensitrelvir-Resistant SARS-CoV-2, Japan. Doi A; Ota M; Saito M; Matsuyama S Emerg Infect Dis; 2024 Jun; 30(6):1289-1291. PubMed ID: 38669127 [TBL] [Abstract][Full Text] [Related]
18. Adaptive Mutation in the Main Protease Cleavage Site of Feline Coronavirus Renders the Virus More Resistant to Main Protease Inhibitors. Jiao Z; Yan Y; Chen Y; Wang G; Wang X; Li L; Yang M; Hu X; Guo Y; Shi Y; Peng G J Virol; 2022 Sep; 96(17):e0090722. PubMed ID: 36000844 [TBL] [Abstract][Full Text] [Related]
19. Theoretical insights into the binding interaction of Nirmatrelvir with SARS-CoV-2 Mpro mutants (C145A and C145S): MD simulations and binding free-energy calculation to understand drug resistance. Purohit P; Panda M; Muya JT; Bandyopadhyay P; Meher BR J Biomol Struct Dyn; 2024 Oct; 42(17):8865-8884. PubMed ID: 37599474 [TBL] [Abstract][Full Text] [Related]
20. Effects of SARS-CoV-2 Main Protease Mutations at Positions L50, E166, and L167 Rendering Resistance to Covalent and Noncovalent Inhibitors. Kovalevsky A; Aniana A; Ghirlando R; Coates L; Drago VN; Wear L; Gerlits O; Nashed NT; Louis JM J Med Chem; 2024 Oct; 67(20):18478-18490. PubMed ID: 39370853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]