These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 39053689)

  • 1. AAontology: An Ontology of Amino Acid Scales for Interpretable Machine Learning.
    Breimann S; Kamp F; Steiner H; Frishman D
    J Mol Biol; 2024 Oct; 436(19):168717. PubMed ID: 39053689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ProFET: Feature engineering captures high-level protein functions.
    Ofer D; Linial M
    Bioinformatics; 2015 Nov; 31(21):3429-36. PubMed ID: 26130574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable numerical descriptors of amino acid space.
    Georgiev AG
    J Comput Biol; 2009 May; 16(5):703-23. PubMed ID: 19432540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AAindex: amino acid index database, progress report 2008.
    Kawashima S; Pokarowski P; Pokarowska M; Kolinski A; Katayama T; Kanehisa M
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D202-5. PubMed ID: 17998252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties.
    Huang HL; Lin IC; Liou YF; Tsai CT; Hsu KT; Huang WL; Ho SJ; Ho SY
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S47. PubMed ID: 21342579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An interpretable machine learning method for homo-trimeric protein interface residue-residue interaction prediction.
    Hong Z; Liu J; Chen Y
    Biophys Chem; 2021 Nov; 278():106666. PubMed ID: 34418678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the limitations of biophysical propensity scales coupled with machine learning for protein sequence analysis.
    Raimondi D; Orlando G; Vranken WF; Moreau Y
    Sci Rep; 2019 Nov; 9(1):16932. PubMed ID: 31729443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based prediction of the effects of a missense variant on protein stability.
    Yang Y; Chen B; Tan G; Vihinen M; Shen B
    Amino Acids; 2013 Mar; 44(3):847-55. PubMed ID: 23064876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IDM-PhyChm-Ens: intelligent decision-making ensemble methodology for classification of human breast cancer using physicochemical properties of amino acids.
    Ali S; Majid A; Khan A
    Amino Acids; 2014 Apr; 46(4):977-93. PubMed ID: 24390396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of RNA binding sites in proteins from amino acid sequence.
    Terribilini M; Lee JH; Yan C; Jernigan RL; Honavar V; Dobbs D
    RNA; 2006 Aug; 12(8):1450-62. PubMed ID: 16790841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino Acid Encoding Methods for Protein Sequences: A Comprehensive Review and Assessment.
    Jing X; Dong Q; Hong D; Lu R
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1918-1931. PubMed ID: 30998480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.
    Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Node-Weighted Amino Acid Network Strategy for Characterization and Identification of Protein Functional Residues.
    Yan W; Hu G; Liang Z; Zhou J; Yang Y; Chen J; Shen B
    J Chem Inf Model; 2018 Sep; 58(9):2024-2032. PubMed ID: 30107728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning.
    Pandurangan AP; Blundell TL
    Protein Sci; 2020 Jan; 29(1):247-257. PubMed ID: 31693276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advances in bioinformatics-based protein function prediction].
    He X; Liu Y; Zeng X; Gao R; Tian Z; Fan X
    Sheng Wu Gong Cheng Xue Bao; 2024 Jul; 40(7):2087-2099. PubMed ID: 39044577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning techniques for protein function prediction.
    Bonetta R; Valentino G
    Proteins; 2020 Mar; 88(3):397-413. PubMed ID: 31603244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.