These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 39053689)

  • 21. A novel method for achieving an optimal classification of the proteinogenic amino acids.
    Then A; Mácha K; Ibrahim B; Schuster S
    Sci Rep; 2020 Sep; 10(1):15321. PubMed ID: 32948819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SPOTONE: Hot Spots on Protein Complexes with Extremely Randomized Trees via Sequence-Only Features.
    Preto AJ; Moreira IS
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PseAAC-General: fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets.
    Du P; Gu S; Jiao Y
    Int J Mol Sci; 2014 Feb; 15(3):3495-506. PubMed ID: 24577312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug-Protein Interactions Prediction Models Using Feature Selection and Classification Techniques.
    Idhaya T; Suruliandi A; Raja SP
    Curr Drug Metab; 2023; 24(12):817-834. PubMed ID: 38270152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular automata and its applications in protein bioinformatics.
    Xiao X; Wang P; Chou KC
    Curr Protein Pept Sci; 2011 Sep; 12(6):508-19. PubMed ID: 21787298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fuzzy clustering of physicochemical and biochemical properties of amino acids.
    Saha I; Maulik U; Bandyopadhyay S; Plewczynski D
    Amino Acids; 2012 Aug; 43(2):583-94. PubMed ID: 21993537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of microRNA-binding residues in protein using a Laplacian support vector machine based on sequence information.
    Ma X; Guo J; Sun X
    J Bioinform Comput Biol; 2018 Jun; 16(3):1840009. PubMed ID: 29591488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NEAT-FLEX: Predicting the conformational flexibility of amino acids using neuroevolution of augmenting topologies.
    Grisci B; Dorn M
    J Bioinform Comput Biol; 2017 Jun; 15(3):1750009. PubMed ID: 28403668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. mLASSO-Hum: A LASSO-based interpretable human-protein subcellular localization predictor.
    Wan S; Mak MW; Kung SY
    J Theor Biol; 2015 Oct; 382():223-34. PubMed ID: 26164062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural classification of proteins using texture descriptors extracted from the cellular automata image.
    Kavianpour H; Vasighi M
    Amino Acids; 2017 Feb; 49(2):261-271. PubMed ID: 27778167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SMILE: systems metabolomics using interpretable learning and evolution.
    Sha C; Cuperlovic-Culf M; Hu T
    BMC Bioinformatics; 2021 May; 22(1):284. PubMed ID: 34049495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3gClust: Human Protein Cluster Analysis.
    Halder AK; Chatterjee P; Nasipuri M; Plewczynski D; Basu S
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1773-1784. PubMed ID: 29993556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying the presence and severity of dementia by applying interpretable machine learning techniques on structured clinical records.
    Vyas A; Aisopos F; Vidal ME; Garrard P; Paliouras G
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):271. PubMed ID: 36253849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classifying Protein Sequences Using Regularized Multi-Task Learning.
    Charuvaka A; Rangwala H
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1087-98. PubMed ID: 26357046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Silico Prediction of Gamma-Aminobutyric Acid Type-A Receptors Using Novel Machine-Learning-Based SVM and GBDT Approaches.
    Liao Z; Huang Y; Yue X; Lu H; Xuan P; Ju Y
    Biomed Res Int; 2016; 2016():2375268. PubMed ID: 27579307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Review of Machine Learning and Algorithmic Methods for Protein Phosphorylation Site Prediction.
    Esmaili F; Pourmirzaei M; Ramazi S; Shojaeilangari S; Yavari E
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1266-1285. PubMed ID: 37863385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MDCAN-Lys: A Model for Predicting Succinylation Sites Based on Multilane Dense Convolutional Attention Network.
    Wang H; Zhao H; Yan Z; Zhao J; Han J
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34208298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.