These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 39053876)
1. Polystyrene microplastics facilitate renal fibrosis through accelerating tubular epithelial cell senescence. Pan C; Wang X; Fan Z; Mao W; Shi Y; Wu Y; Liu T; Xu Z; Wang H; Chen H Food Chem Toxicol; 2024 Sep; 191():114888. PubMed ID: 39053876 [TBL] [Abstract][Full Text] [Related]
2. WNT/β-catenin signal inhibitor IC-2-derived small-molecule compounds suppress TGF-β1-induced fibrogenic response of renal epithelial cells by inhibiting SMAD2/3 signalling. Hoi S; Tsuchiya H; Itaba N; Suzuki K; Oka H; Morimoto M; Takata T; Isomoto H; Shiota G Clin Exp Pharmacol Physiol; 2020 Jun; 47(6):940-946. PubMed ID: 32012313 [TBL] [Abstract][Full Text] [Related]
3. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis. Gong W; Luo C; Peng F; Xiao J; Zeng Y; Yin B; Chen X; Li S; He X; Liu Y; Cao H; Xu J; Long H Clin Sci (Lond); 2021 Aug; 135(15):1873-1895. PubMed ID: 34318888 [TBL] [Abstract][Full Text] [Related]
4. MicroRNA-34a Promotes Renal Fibrosis by Downregulation of Klotho in Tubular Epithelial Cells. Liu Y; Bi X; Xiong J; Han W; Xiao T; Xu X; Yang K; Liu C; Jiang W; He T; Yu Y; Li Y; Zhang J; Zhang B; Zhao J Mol Ther; 2019 May; 27(5):1051-1065. PubMed ID: 30853453 [TBL] [Abstract][Full Text] [Related]
5. Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells. Luo C; Zhou S; Zhou Z; Liu Y; Yang L; Liu J; Zhang Y; Li H; Liu Y; Hou FF; Zhou L J Am Soc Nephrol; 2018 Apr; 29(4):1238-1256. PubMed ID: 29440280 [TBL] [Abstract][Full Text] [Related]
6. A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-β1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis. Jiang L; Qiu W; Zhou Y; Wen P; Fang L; Cao H; Zen K; He W; Zhang C; Dai C; Yang J Kidney Int; 2013 Aug; 84(2):285-96. PubMed ID: 23515048 [TBL] [Abstract][Full Text] [Related]
7. PS-MPs promotes the progression of inflammation and fibrosis in diabetic nephropathy through NLRP3/Caspase-1 and TGF-β1/Smad2/3 signaling pathways. Feng L; Chen C; Xiong X; Wang X; Li X; Kuang Q; Wei X; Gao L; Niu X; Li Q; Yang J; Li L; Luo P Ecotoxicol Environ Saf; 2024 Mar; 273():116102. PubMed ID: 38382346 [TBL] [Abstract][Full Text] [Related]
8. FHL2 participates in renal interstitial fibrosis by altering the phenotype of renal tubular epithelial cells via regulating the β-catenin pathway. Zhou SG; Ma HJ; Guo ZY; Zhang W; Yang X Eur Rev Med Pharmacol Sci; 2018 May; 22(9):2734-2741. PubMed ID: 29771425 [TBL] [Abstract][Full Text] [Related]
9. Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Miao J; Huang J; Luo C; Ye H; Ling X; Wu Q; Shen W; Zhou L Physiol Rep; 2021 Jan; 9(2):e14696. PubMed ID: 33463897 [TBL] [Abstract][Full Text] [Related]
10. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. Doi S; Zou Y; Togao O; Pastor JV; John GB; Wang L; Shiizaki K; Gotschall R; Schiavi S; Yorioka N; Takahashi M; Boothman DA; Kuro-O M J Biol Chem; 2011 Mar; 286(10):8655-8665. PubMed ID: 21209102 [TBL] [Abstract][Full Text] [Related]
11. Angiotensin II contributes to renal fibrosis independently of Notch pathway activation. Lavoz C; Rodrigues-Diez R; Benito-Martin A; Rayego-Mateos S; Rodrigues-Diez RR; Alique M; Ortiz A; Mezzano S; Egido J; Ruiz-Ortega M PLoS One; 2012; 7(7):e40490. PubMed ID: 22792351 [TBL] [Abstract][Full Text] [Related]
12. Dual inhibiting senescence and epithelial-to-mesenchymal transition by erythropoietin preserve tubular epithelial cell regeneration and ameliorate renal fibrosis in unilateral ureteral obstruction. Tasanarong A; Kongkham S; Khositseth S Biomed Res Int; 2013; 2013():308130. PubMed ID: 24350257 [TBL] [Abstract][Full Text] [Related]
13. Novel RAS inhibitor 25-O-methylalisol F attenuates epithelial-to-mesenchymal transition and tubulo-interstitial fibrosis by selectively inhibiting TGF-β-mediated Smad3 phosphorylation. Chen H; Yang T; Wang MC; Chen DQ; Yang Y; Zhao YY Phytomedicine; 2018 Mar; 42():207-218. PubMed ID: 29655688 [TBL] [Abstract][Full Text] [Related]
14. MAD2B promotes tubular epithelial-to-mesenchymal transition and renal tubulointerstitial fibrosis via Skp2. Tang H; Fan D; Lei CT; Ye C; Gao P; Chen S; Meng XF; Su H; Zhang C J Mol Med (Berl); 2016 Nov; 94(11):1297-1307. PubMed ID: 27488450 [TBL] [Abstract][Full Text] [Related]
15. Human umbilical cord mesenchymal stem cell attenuates renal fibrosis via TGF-β/Smad signaling pathways in vivo and in vitro. Yu Y; Hu D; Zhou Y; Xiang H; Liu B; Shen L; Long C; Liu X; Lin T; He D; Zhang Y; Xu T; Zhang D; Wei G Eur J Pharmacol; 2020 Sep; 883():173343. PubMed ID: 32629029 [TBL] [Abstract][Full Text] [Related]
16. PAI-1 induction during kidney injury promotes fibrotic epithelial dysfunction via deregulation of klotho, p53, and TGF-β1-receptor signaling. Gifford CC; Lian F; Tang J; Costello A; Goldschmeding R; Samarakoon R; Higgins PJ FASEB J; 2021 Jul; 35(7):e21725. PubMed ID: 34110636 [TBL] [Abstract][Full Text] [Related]
17. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Wang YL; Lee YH; Hsu YH; Chiu IJ; Huang CC; Huang CC; Chia ZC; Lee CP; Lin YF; Chiu HW Environ Health Perspect; 2021 May; 129(5):57003. PubMed ID: 33956507 [TBL] [Abstract][Full Text] [Related]
18. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice. Li X; Zhang T; Lv W; Wang H; Chen H; Xu Q; Cai H; Dai J Ecotoxicol Environ Saf; 2022 Mar; 232():113238. PubMed ID: 35121255 [TBL] [Abstract][Full Text] [Related]
19. Identification of histone deacetylase 8 as a novel therapeutic target for renal fibrosis. Zhang Y; Zou J; Tolbert E; Zhao TC; Bayliss G; Zhuang S FASEB J; 2020 Jun; 34(6):7295-7310. PubMed ID: 32281211 [TBL] [Abstract][Full Text] [Related]
20. Silencing of the lncRNA Zhang B; Zhao C; Hou L; Wu Y Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1125-F1134. PubMed ID: 33135476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]