These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 39054251)
1. Light-Induced Electron Transfer in a [NiFe] Hydrogenase Opens a Photochemical Shortcut for Catalytic Dihydrogen Cleavage. Karafoulidi-Retsou C; Lorent C; Katz S; Rippers Y; Matsuura H; Higuchi Y; Zebger I; Horch M Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202409065. PubMed ID: 39054251 [TBL] [Abstract][Full Text] [Related]
2. Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase. Greene BL; Wu CH; McTernan PM; Adams MW; Dyer RB J Am Chem Soc; 2015 Apr; 137(13):4558-66. PubMed ID: 25790178 [TBL] [Abstract][Full Text] [Related]
3. Structural Determinants of the Catalytic Ni T Waffo AF; Lorent C; Katz S; Schoknecht J; Lenz O; Zebger I; Caserta G J Am Chem Soc; 2023 Jun; 145(25):13674-13685. PubMed ID: 37328284 [TBL] [Abstract][Full Text] [Related]
4. Glutamate Gated Proton-Coupled Electron Transfer Activity of a [NiFe]-Hydrogenase. Greene BL; Vansuch GE; Wu CH; Adams MW; Dyer RB J Am Chem Soc; 2016 Oct; 138(39):13013-13021. PubMed ID: 27617712 [TBL] [Abstract][Full Text] [Related]
5. Proton Transfer Mechanisms in Bimetallic Hydrogenases. Tai H; Hirota S; Stripp ST Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230 [TBL] [Abstract][Full Text] [Related]
6. Control of the transition between Ni-C and Ni-SI(a) states by the redox state of the proximal Fe-S cluster in the catalytic cycle of [NiFe] hydrogenase. Tai H; Nishikawa K; Suzuki M; Higuchi Y; Hirota S Angew Chem Int Ed Engl; 2014 Dec; 53(50):13817-20. PubMed ID: 25297065 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans. Schröder O; Bleijlevens B; de Jongh TE; Chen Z; Li T; Fischer J; Förster J; Friedrich CG; Bagley KA; Albracht SP; Lubitz W J Biol Inorg Chem; 2007 Feb; 12(2):212-33. PubMed ID: 17082918 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Tai H; Higuchi Y; Hirota S Dalton Trans; 2018 Mar; 47(13):4408-4423. PubMed ID: 29532823 [TBL] [Abstract][Full Text] [Related]
9. Infrared Spectroscopy During Electrocatalytic Turnover Reveals the Ni-L Active Site State During H2 Oxidation by a NiFe Hydrogenase. Hidalgo R; Ash PA; Healy AJ; Vincent KA Angew Chem Int Ed Engl; 2015 Jun; 54(24):7110-3. PubMed ID: 25925315 [TBL] [Abstract][Full Text] [Related]
10. Proton Inventory and Dynamics in the Nia-S to Nia-C Transition of a [NiFe] Hydrogenase. Greene BL; Wu CH; Vansuch GE; Adams MW; Dyer RB Biochemistry; 2016 Mar; 55(12):1813-25. PubMed ID: 26956769 [TBL] [Abstract][Full Text] [Related]
11. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. Tai H; Hirota S Chembiochem; 2020 Jun; 21(11):1573-1581. PubMed ID: 32180334 [TBL] [Abstract][Full Text] [Related]
12. [NiFe]-hydrogenases revisited: nickel-carboxamido bond formation in a variant with accrued O2-tolerance and a tentative re-interpretation of Ni-SI states. Volbeda A; Martin L; Liebgott PP; De Lacey AL; Fontecilla-Camps JC Metallomics; 2015 Apr; 7(4):710-8. PubMed ID: 25780984 [TBL] [Abstract][Full Text] [Related]
13. Pre-steady-state kinetics of the reactions of [NiFe]-hydrogenase from Chromatium vinosum with H2 and CO. Happe RP; Roseboom W; Albracht SP Eur J Biochem; 1999 Feb; 259(3):602-8. PubMed ID: 10092843 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O Evans RM; Ash PA; Beaton SE; Brooke EJ; Vincent KA; Carr SB; Armstrong FA J Am Chem Soc; 2018 Aug; 140(32):10208-10220. PubMed ID: 30070475 [TBL] [Abstract][Full Text] [Related]
15. Discovery of Dark pH-Dependent H(+) Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate. Murphy BJ; Hidalgo R; Roessler MM; Evans RM; Ash PA; Myers WK; Vincent KA; Armstrong FA J Am Chem Soc; 2015 Jul; 137(26):8484-9. PubMed ID: 26103582 [TBL] [Abstract][Full Text] [Related]
16. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Ogata H; Lubitz W; Higuchi Y Dalton Trans; 2009 Oct; (37):7577-87. PubMed ID: 19759926 [TBL] [Abstract][Full Text] [Related]
17. X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Ilina Y; Lorent C; Katz S; Jeoung JH; Shima S; Horch M; Zebger I; Dobbek H Angew Chem Int Ed Engl; 2019 Dec; 58(51):18710-18714. PubMed ID: 31591784 [TBL] [Abstract][Full Text] [Related]
18. Active Site of the NAD(+)-Reducing Hydrogenase from Ralstonia eutropha Studied by EPR Spectroscopy. Löwenstein J; Lauterbach L; Teutloff C; Lenz O; Bittl R J Phys Chem B; 2015 Oct; 119(43):13834-41. PubMed ID: 26214595 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. Saggu M; Zebger I; Ludwig M; Lenz O; Friedrich B; Hildebrandt P; Lendzian F J Biol Chem; 2009 Jun; 284(24):16264-16276. PubMed ID: 19304663 [TBL] [Abstract][Full Text] [Related]
20. Applications of Photogating and Time Resolved Spectroscopy to Mechanistic Studies of Hydrogenases. Greene BL; Vansuch GE; Chica BC; Adams MWW; Dyer RB Acc Chem Res; 2017 Nov; 50(11):2718-2726. PubMed ID: 29083854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]