These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 39054354)

  • 21. Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway.
    Faehnle CR; Walleshauser J; Joshua-Tor L
    Nature; 2014 Oct; 514(7521):252-256. PubMed ID: 25119025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TUT7 catalyzes the uridylation of the 3' end for rapid degradation of histone mRNA.
    Lackey PE; Welch JD; Marzluff WF
    RNA; 2016 Nov; 22(11):1673-1688. PubMed ID: 27609902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs.
    Ustianenko D; Hrossova D; Potesil D; Chalupnikova K; Hrazdilova K; Pachernik J; Cetkovska K; Uldrijan S; Zdrahal Z; Vanacova S
    RNA; 2013 Dec; 19(12):1632-8. PubMed ID: 24141620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7).
    Thornton JE; Chang HM; Piskounova E; Gregory RI
    RNA; 2012 Oct; 18(10):1875-85. PubMed ID: 22898984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3' RNA Uridylation in Epitranscriptomics, Gene Regulation, and Disease.
    Menezes MR; Balzeau J; Hagan JP
    Front Mol Biosci; 2018; 5():61. PubMed ID: 30057901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase.
    Lapointe CP; Wickens M
    J Biol Chem; 2013 Jul; 288(28):20723-33. PubMed ID: 23709223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LIN28 Zinc Knuckle Domain Is Required and Sufficient to Induce let-7 Oligouridylation.
    Wang L; Nam Y; Lee AK; Yu C; Roth K; Chen C; Ransey EM; Sliz P
    Cell Rep; 2017 Mar; 18(11):2664-2675. PubMed ID: 28297670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for acceptor RNA substrate selectivity of the 3' terminal uridylyl transferase Tailor.
    Kroupova A; Ivascu A; Reimão-Pinto MM; Ameres SL; Jinek M
    Nucleic Acids Res; 2019 Jan; 47(2):1030-1042. PubMed ID: 30462292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The distinct RNA-interaction modes of a small ZnF domain underlay TUT4(7) diverse action in miRNA regulation.
    Chaves-Arquero B; Collins KM; Christodoulou E; Nicastro G; Martin SR; Ramos A
    RNA Biol; 2021 Nov; 18(sup2):770-781. PubMed ID: 34719327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Function and Regulation of Human Terminal Uridylyltransferases.
    Yashiro Y; Tomita K
    Front Genet; 2018; 9():538. PubMed ID: 30483311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA.
    Heo I; Joo C; Cho J; Ha M; Han J; Kim VN
    Mol Cell; 2008 Oct; 32(2):276-84. PubMed ID: 18951094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Dynamics Simulations for Deciphering the Structural Basis of Recognition of Pre-let-7 miRNAs by LIN28.
    Sharma C; Mohanty D
    Biochemistry; 2017 Feb; 56(5):723-735. PubMed ID: 28076679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Terminal uridyltransferase 7 regulates TLR4-triggered inflammation by controlling Regnase-1 mRNA uridylation and degradation.
    Lin CC; Shen YR; Chang CC; Guo XY; Young YY; Lai TY; Yu IS; Lee CY; Chuang TH; Tsai HY; Hsu LC
    Nat Commun; 2021 Jun; 12(1):3878. PubMed ID: 34188032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prevalent cytidylation and uridylation of precursor miRNAs in Arabidopsis.
    Song J; Wang X; Song B; Gao L; Mo X; Yue L; Yang H; Lu J; Ren G; Mo B; Chen X
    Nat Plants; 2019 Dec; 5(12):1260-1272. PubMed ID: 31792392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-molecule approach to immunoprecipitated protein complexes: insights into miRNA uridylation.
    Yeom KH; Heo I; Lee J; Hohng S; Kim VN; Joo C
    EMBO Rep; 2011 Jul; 12(7):690-6. PubMed ID: 21637296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation.
    Heo I; Joo C; Kim YK; Ha M; Yoon MJ; Cho J; Yeom KH; Han J; Kim VN
    Cell; 2009 Aug; 138(4):696-708. PubMed ID: 19703396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis of pri-let-7 recognition by human pseudouridine synthase TruB1.
    Xuan Y; Wang L; Zhang L; Lv M; Li F; Gong Q
    Biochem Biophys Res Commun; 2024 Aug; 721():150122. PubMed ID: 38776834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Lin28 cold-shock domain remodels pre-let-7 microRNA.
    Mayr F; Schütz A; Döge N; Heinemann U
    Nucleic Acids Res; 2012 Aug; 40(15):7492-506. PubMed ID: 22570413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SET7/9 methylation of the pluripotency factor LIN28A is a nucleolar localization mechanism that blocks let-7 biogenesis in human ESCs.
    Kim SK; Lee H; Han K; Kim SC; Choi Y; Park SW; Bak G; Lee Y; Choi JK; Kim TK; Han YM; Lee D
    Cell Stem Cell; 2014 Dec; 15(6):735-49. PubMed ID: 25479749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nanobody targeting the LIN28:let-7 interaction fragment of TUT4 blocks uridylation of let-7.
    Yu C; Wang L; Rowe RG; Han A; Ji W; McMahon C; Baier AS; Huang YC; Marion W; Pearson DS; Kruse AC; Daley GQ; Wu H; Sliz P
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4653-4663. PubMed ID: 32060122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.