BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3905510)

  • 1. [Genetic and biochemical study of yeast acid phosphatases. XI. Gene ACP80 controls inorganic phosphate transport].
    Sambuk EV; Alenin VV; Kozhin SA
    Genetika; 1985 Sep; 21(9):1449-54. PubMed ID: 3905510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Genetico-biochemical study of the acid phosphatases of Saccharomyces cerevisiae yeasts. X. Analysis of mutations arising in gene acp3].
    Kozhin SA; Samsonova MG; Maarich MA; Smirnov MN
    Genetika; 1980; 16(3):408-17. PubMed ID: 6995224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of inorganic phosphate transport systems in Saccharomyces cerevisiae.
    Tamai Y; Toh-e A; Oshima Y
    J Bacteriol; 1985 Nov; 164(2):964-8. PubMed ID: 3902805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; McClinton DC; Madden SL; Preis LH
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6070-4. PubMed ID: 3526349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Genetico-biochemical study of acid phosphatases in Saccharomyces cerevisiae yeast. V. Genetic control of regulation of acid phosphatase II synthesis].
    Samsonova MG; Padkina MV; Krasnopevtseva NG; Kozhin SA; Smirnov MN
    Genetika; 1975; 11(9):104-15. PubMed ID: 765203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae.
    Bun-ya M; Shikata K; Nakade S; Yompakdee C; Harashima S; Oshima Y
    Curr Genet; 1996 Mar; 29(4):344-51. PubMed ID: 8598055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A constitutive mutation, phoT, of the repressible acid phosphatase synthesis with inability to transport inorganic phosphate in Saccharomyces cerevisiae.
    Ueda Y; Oshima Y
    Mol Gen Genet; 1975; 136(3):255-9. PubMed ID: 16094976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; Stranathan MC; Preis LH
    Mol Cell Biol; 1986 Jan; 6(1):38-46. PubMed ID: 3537687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Genetic mapping of genes regulating synthesis of acid phosphatases in the yeast Saccharomyces cerevisiae of the Peterhoff yeast collection].
    Sambuk EV; Kuchkartaev AI; Padkina MV; Smirnov MN
    Genetika; 1991 Apr; 27(4):644-8. PubMed ID: 1879680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae.
    To-E A; Ueda Y; Kakimoto SI; Oshima Y
    J Bacteriol; 1973 Feb; 113(2):727-38. PubMed ID: 4570606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of repressible acid phosphatase by unsaturated fatty acid in Saccharomyces cerevisiae.
    Doi S; Watanabe M; Tanabe K; Nakasako M; Yoshimura M
    J Cell Sci; 1989 Nov; 94 ( Pt 3)():511-6. PubMed ID: 2698891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disturbance of the machinery for the gene expression by acidic pH in the repressible acid phosphatase system of Saccharomyces cerevisiae.
    Toh-e A; Kobayashi S; Oshima Y
    Mol Gen Genet; 1978 Jun; 162(2):139-49. PubMed ID: 27717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode of expression of the positive regulatory genes PHO2 and PHO4 of the phosphatase regulon in Saccharomyces cerevisiae.
    Yoshida K; Kuromitsu Z; Ogawa N; Oshima Y
    Mol Gen Genet; 1989 May; 217(1):31-9. PubMed ID: 2505053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of phosphatase synthesis in Saccharomyces cerevisiae--a review.
    Oshima Y; Ogawa N; Harashima S
    Gene; 1996 Nov; 179(1):171-7. PubMed ID: 8955644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sequence of the PHO81 gene involved in the regulation of the repressible acid phosphatase gene in Saccharomyces cerevisiae.
    Coche T; Prozzi D; Legrain M; Hilger F; Vandenhaute J
    Nucleic Acids Res; 1990 Apr; 18(8):2176. PubMed ID: 2186378
    [No Abstract]   [Full Text] [Related]  

  • 16. Cotransport of phosphate and sodium by yeast.
    Roomans GM; Blasco F; Borst-Pauwels GW
    Biochim Biophys Acta; 1977 May; 467(1):65-71. PubMed ID: 16650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast.
    Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    FEMS Microbiol Lett; 1989 Jul; 51(1):55-9. PubMed ID: 2676709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of thiamine biosynthesis in Saccharomyces cerevisiae.
    Kawasaki Y; Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    J Bacteriol; 1990 Oct; 172(10):6145-7. PubMed ID: 2170344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of repressible acid phosphatase gene transcription in Saccharomyces cerevisiae.
    Lemire JM; Willcocks T; Halvorson HO; Bostian KA
    Mol Cell Biol; 1985 Aug; 5(8):2131-41. PubMed ID: 3915785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The yeast phosphatase system.
    Vogel K; Hinnen A
    Mol Microbiol; 1990 Dec; 4(12):2013-7. PubMed ID: 1965216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.