These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 39055182)

  • 1. Physicochemical stability of corn protein hydrolysate/tannic acid complex-based β-carotene nanoemulsion delivery system.
    Wang YH; He SH; Huang JH; Guo WY; Gao XL; Li GH
    Food Sci Nutr; 2024 Jul; 12(7):5111-5120. PubMed ID: 39055182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability and in vitro digestibility of beta-carotene in nanoemulsions fabricated with different carrier oils.
    Zhou X; Wang H; Wang C; Zhao C; Peng Q; Zhang T; Zhao C
    Food Sci Nutr; 2018 Nov; 6(8):2537-2544. PubMed ID: 30510755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Digestion and Storage Stability of β-Carotene-Loaded Nanoemulsion Stabilized by Soy Protein Isolate (SPI)-Citrus Pectin (CP) Complex/Conjugate Prepared with Ultrasound.
    Ma X; Yan T; Miao S; Mao L; Liu D
    Foods; 2022 Aug; 11(16):. PubMed ID: 36010417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Different Protein Emulsifiers on Physicochemical Properties of β-Carotene-Loaded Nanoemulsion: Effect on Formation, Stability, and In Vitro Digestion.
    Liu Y; Liu C; Zhang S; Li J; Zheng H; Jin H; Xu J
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33440816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability.
    Luo X; Zhou Y; Bai L; Liu F; Deng Y; McClements DJ
    J Colloid Interface Sci; 2017 Mar; 490():328-335. PubMed ID: 27914331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and utilization of soy protein isolate-(-)-epigallocatechin gallate-maltose ternary conjugate as an emulsifier for nanoemulsions: Enhanced physicochemical stability of the β-carotene nanoemulsion.
    Geng M; Feng X; Wu X; Tan X; Shang B; Huang Y; Teng F; Li Y
    Food Chem; 2023 Aug; 417():135842. PubMed ID: 36931013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food-Grade Nanoemulsions for the Effective Delivery of β-Carotene.
    Mehmood T; Ahmed A; Ahmed Z
    Langmuir; 2021 Mar; 37(10):3086-3092. PubMed ID: 33646002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eugenol improves physical and chemical stabilities of nanoemulsions loaded with β-carotene.
    Guan Y; Wu J; Zhong Q
    Food Chem; 2016 Mar; 194():787-96. PubMed ID: 26471619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the Stability and Digestibility of Long-Chain Omega-3 Algal Oil Nanoemulsions Prepared with Lecithin and Tween 40 Emulsifiers Using an In Vitro Digestion Model.
    Zhou Q; Lane KE; Li W
    Foods; 2024 Jul; 13(15):. PubMed ID: 39123598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of physicochemical and encapsulation stability of O
    Katsouli M; Giannou V; Tzia C
    Food Funct; 2020 Oct; 11(10):8878-8892. PubMed ID: 32986051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and characterization of the formation of oil-in-water diazinon nanoemulsions: Modeling and influence of the oil phase, surfactant and sonication.
    Badawy MEI; Saad ASA; Tayeb EHM; Mohammed SA; Abd-Elnabi AD
    J Environ Sci Health B; 2017 Dec; 52(12):896-911. PubMed ID: 29111904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the In Vitro Bioaccessibility of β-Carotene Using Pectin Added Nanoemulsions.
    Teixé-Roig J; Oms-Oliu G; Ballesté-Muñoz S; Odriozola-Serrano I; Martín-Belloso O
    Foods; 2020 Apr; 9(4):. PubMed ID: 32272575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios.
    Ma P; Zeng Q; Tai K; He X; Yao Y; Hong X; Yuan F
    J Food Sci Technol; 2018 Sep; 55(9):3485-3497. PubMed ID: 30150807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of palm kernel oil esters nanoemulsions with hydrocolloid gum for enhanced topical delivery of ibuprofen.
    Salim N; Basri M; Rahman MB; Abdullah DK; Basri H
    Int J Nanomedicine; 2012; 7():4739-47. PubMed ID: 22973096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Factors Influencing Formation of Nanoemulsion by Spontaneous Emulsification: Impact on Droplet Size, Polydispersity Index, and Stability.
    Algahtani MS; Ahmad MZ; Ahmad J
    Bioengineering (Basel); 2022 Aug; 9(8):. PubMed ID: 36004909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Ultrasonic Operating Parameters and Emulsifier System on Sacha Inchi Oil Nanoemulsion Characteristics.
    Sinsuebpol C; Changsan N
    J Oleo Sci; 2020 May; 69(5):437-448. PubMed ID: 32281560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Konjac glucomannan octenyl succinate (KGOS) as an emulsifier for lipophilic bioactive nutrient encapsulation.
    Li YC; Zhong G; Meng FB; Yu H; Liu DY; Peng LX
    J Sci Food Agric; 2018 Dec; 98(15):5742-5749. PubMed ID: 29766500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Degradation and Isomerization of β-Carotene in Oil-in-Water Nanoemulsions Supplemented with Natural Antioxidants.
    Yi J; Fan Y; Yokoyama W; Zhang Y; Zhao L
    J Agric Food Chem; 2016 Mar; 64(9):1970-6. PubMed ID: 26881704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation optimisation and storage stability of nanoemulsion-based lutein delivery systems.
    Li J; Guo R; Hu H; Wu X; Ai L; Wu Y
    J Microencapsul; 2018 Sep; 35(6):570-583. PubMed ID: 30557069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-in-Oil-in-Water Nanoemulsions Containing Temulawak (
    Harimurti N; Nasikin M; Mulia K
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33401775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.