These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39056142)
1. High-Efficiency Perovskite Solar Cells with Improved Interfacial Charge Extraction by Bridging Molecules. Li M; Jiao B; Peng Y; Zhou J; Tan L; Ren N; Ye Y; Liu Y; Yang Y; Chen Y; Ding L; Yi C Adv Mater; 2024 Sep; 36(38):e2406532. PubMed ID: 39056142 [TBL] [Abstract][Full Text] [Related]
2. Synergistic Optimization of Buried Interface by Multifunctional Organic-Inorganic Complexes for Highly Efficient Planar Perovskite Solar Cells. Liu H; Lu Z; Zhang W; Zhou H; Xia Y; Shi Y; Wang J; Chen R; Xia H; Wang HL Nanomicro Lett; 2023 Jun; 15(1):156. PubMed ID: 37337117 [TBL] [Abstract][Full Text] [Related]
3. Buried Interface Optimization for Flexible Perovskite Solar Cells with High Efficiency and Mechanical Stability. Zhao D; Zhang C; Ren J; Li S; Wu Y; Sun Q; Hao Y Small; 2024 May; 20(19):e2308364. PubMed ID: 38054792 [TBL] [Abstract][Full Text] [Related]
4. Record-Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation. Yang L; Feng J; Liu Z; Duan Y; Zhan S; Yang S; He K; Li Y; Zhou Y; Yuan N; Ding J; Liu SF Adv Mater; 2022 Jun; 34(24):e2201681. PubMed ID: 35435279 [TBL] [Abstract][Full Text] [Related]
5. Multifunctional Buried Interface Modification Enables Efficient Tin Perovskite Solar Cells. Chen Y; Qi H; Wang K; Kang Z; Pan G; Everett CR; Müller-Buschbaum P; Tong Y; Wang H Small Methods; 2024 Feb; 8(2):e2300029. PubMed ID: 37208789 [TBL] [Abstract][Full Text] [Related]
6. TEOS modification for improved performance in perovskite solar cells: addressing the interface defects and charge transfer issues of SnO Ebic M Nanotechnology; 2024 Nov; 36(4):. PubMed ID: 39312905 [TBL] [Abstract][Full Text] [Related]
7. Buried-Interface Engineering Enables Efficient and 1960-Hour ISOS-L-2I Stable Inverted Perovskite Solar Cells. Li L; Wei M; Carnevali V; Zeng H; Zeng M; Liu R; Lempesis N; Eickemeyer FT; Luo L; Agosta L; Dankl M; Zakeeruddin SM; Roethlisberger U; Grätzel M; Rong Y; Li X Adv Mater; 2024 Mar; 36(13):e2303869. PubMed ID: 37632843 [TBL] [Abstract][Full Text] [Related]
8. Cinnamate-Functionalized Cellulose Nanocrystals as Interfacial Layers for Efficient and Stable Perovskite Solar Cells. Liu J; Liu N; Li G; Wang Y; Wang Z; Zhang Z; Xu D; Jiang Y; Gao X; Lu X; Feng SP; Zhou G; Liu JM; Gao J ACS Appl Mater Interfaces; 2023 Jan; 15(1):1348-1357. PubMed ID: 36544390 [TBL] [Abstract][Full Text] [Related]
9. Buried Interface Strategies with Covalent Organic Frameworks for High-Performance Inverted Perovskite Solar Cells. Yang S; He J; Chen Z; Luo H; Wei J; Wei X; Li H; Chen J; Zhang W; Wang J; Wang S; Yu G Adv Mater; 2024 Nov; 36(45):e2408686. PubMed ID: 39240027 [TBL] [Abstract][Full Text] [Related]
10. The Synergistic Effect of Phosphonic and Carboxyl Acid Groups for Efficient and Stable Perovskite Solar Cells. Du K; Wang A; Li Y; Xu Y; Li L; Yuan N; Ding J Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068050 [TBL] [Abstract][Full Text] [Related]
11. Dimensionality Control of SnO Zhao Y; Zhu J; He B; Tang Q ACS Appl Mater Interfaces; 2021 Mar; 13(9):11058-11066. PubMed ID: 33634693 [TBL] [Abstract][Full Text] [Related]
12. Improving Buried Interface Contact by Bidentate Anchoring for Inverted Perovskite Solar Cells. Chen XM; Ye YC; Feng SC; Lv BH; Wang JY; Tang JX; Dou WD Small; 2024 Sep; 20(38):e2401256. PubMed ID: 38752227 [TBL] [Abstract][Full Text] [Related]
13. Modifying SnO Dong H; Wang J; Li X; Liu W; Xia T; Yao D; Zhang L; Zuo C; Ding L; Long F ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35820159 [TBL] [Abstract][Full Text] [Related]
14. Oriented Molecular Bridge Constructs Homogeneous Buried Interface for Perovskite Solar Cells with Efficiency Over 25.3. Wang X; Huang H; Wang M; Lan Z; Cui P; Du S; Yang Y; Yan L; Zhang Q; Qu S; Li M Adv Mater; 2024 Apr; 36(16):e2310710. PubMed ID: 38327155 [TBL] [Abstract][Full Text] [Related]
15. All-Inorganic Perovskite Solar Cells with Tetrabutylammonium Acetate as the Buffer Layer between the SnO Zhong H; Li W; Huang Y; Cao D; Zhang C; Bao H; Guo Z; Wan L; Zhang X; Zhang X; Li Y; Ren X; Wang X; Eder D; Wang K; Liu SF; Wang S ACS Appl Mater Interfaces; 2022 Feb; 14(4):5183-5193. PubMed ID: 35073689 [TBL] [Abstract][Full Text] [Related]
16. SnO Li Y; Yao D; Tang Z; Jiang B; Li C; Gao Y; Tian N; Wang J; Zheng G; Long F ACS Appl Mater Interfaces; 2024 Feb; 16(7):9388-9399. PubMed ID: 38324460 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the performance of n-i-p perovskite solar cells by introducing hydroxyethylpiperazine ethane sulfonic acid for interfacial adjustment. Zhang P; Chen Y; Wu S; Li X; Liu M; Li S Nanoscale; 2021 Dec; 14(1):35-41. PubMed ID: 34768278 [TBL] [Abstract][Full Text] [Related]
18. Buried Interface Regulation by Bio-Functional Molecules for Efficient and Stable Planar Perovskite Solar Cells. Pang X; Huang J; Lin C; Zhang Y; Cheng N; Zi W; Sun ZZ; Yu Z; Zhao Z Chemistry; 2023 Mar; 29(14):e202202744. PubMed ID: 36446736 [TBL] [Abstract][Full Text] [Related]
19. 2,2'-Bipyridyl-4,4'-Dicarboxylic Acid Modified Buried Interface of High-Performance Perovskite Solar Cells. Zhao M; Gu WM; Jiang KJ; Jiao X; Gong K; Li F; Zhou X; Song Y Angew Chem Int Ed Engl; 2024 Oct; ():e202418176. PubMed ID: 39402870 [TBL] [Abstract][Full Text] [Related]
20. Bridging the Interfacial Contact for Improved Stability and Efficiency of Inverted Perovskite Solar Cells. Huang Y; Liu T; Li D; Lian Q; Wang Y; Wang G; Mi G; Zhou Y; Amini A; Xu B; Tang Z; Cheng C; Xing G Small; 2022 Jun; 18(24):e2201694. PubMed ID: 35578914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]