These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 39056764)
1. One-Step Formation Method of Plasmid DNA-Loaded, Extracellular Vesicles-Mimicking Lipid Nanoparticles Based on Nucleic Acids Dilution-Induced Assembly. Okami K; Fumoto S; Yamashita M; Nakashima M; Miyamoto H; Kawakami S; Nishida K Cells; 2024 Jul; 13(14):. PubMed ID: 39056764 [TBL] [Abstract][Full Text] [Related]
2. Cationic lipid nanosystems as carriers for nucleic acids. Cortesi R; Campioni M; Ravani L; Drechsler M; Pinotti M; Esposito E N Biotechnol; 2014 Jan; 31(1):44-54. PubMed ID: 24120492 [TBL] [Abstract][Full Text] [Related]
3. Lipid-based nanoparticles for nucleic acid delivery. Li W; Szoka FC Pharm Res; 2007 Mar; 24(3):438-49. PubMed ID: 17252188 [TBL] [Abstract][Full Text] [Related]
4. Diffusion coefficient of cationic liposomes during lipoplex formation determines transfection efficiency in HepG2 cells. Hu D; Fumoto S; Yoshikawa N; Peng J; Miyamoto H; Tanaka M; Nishida K Int J Pharm; 2023 Apr; 637():122881. PubMed ID: 36963641 [TBL] [Abstract][Full Text] [Related]
5. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity. Sarker SR; Aoshima Y; Hokama R; Inoue T; Sou K; Takeoka S Int J Nanomedicine; 2013; 8():1361-75. PubMed ID: 23630419 [TBL] [Abstract][Full Text] [Related]
6. Delineating effect of headgroup and preparation method on transfection versus toxicity of DNA-loaded lipid nanocarriers. Saraswat A; Patel K Nanomedicine (Lond); 2023 Nov; 18(26):1921-1940. PubMed ID: 38078422 [TBL] [Abstract][Full Text] [Related]
7. Transfection of plasmid DNA by nanocarriers containing a gemini cationic lipid with an aromatic spacer or its monomeric counterpart. Martínez-Negro M; Barrán-Berdón AL; Aicart-Ramos C; Moyá ML; de Ilarduya CT; Aicart E; Junquera E Colloids Surf B Biointerfaces; 2018 Jan; 161():519-527. PubMed ID: 29128838 [TBL] [Abstract][Full Text] [Related]
8. Lipids for Nucleic Acid Delivery: Cationic or Neutral Lipoplexes, Synthesis, and Particle Formation. Bessodes M; Dhotel H; Mignet N Methods Mol Biol; 2019; 1943():123-139. PubMed ID: 30838613 [TBL] [Abstract][Full Text] [Related]
9. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency. de Jesus MB; Radaic A; Hinrichs WL; Ferreira CV; de Paula E; Hoekstra D; Zuhorn IS J Biomed Nanotechnol; 2014 Feb; 10(2):355-65. PubMed ID: 24738343 [TBL] [Abstract][Full Text] [Related]
10. Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: Targetable nanocomplexes for in vivo nucleic acid delivery. Tagalakis AD; Maeshima R; Yu-Wai-Man C; Meng J; Syed F; Wu LP; Aldossary AM; McCarthy D; Moghimi SM; Hart SL Acta Biomater; 2017 Mar; 51():351-362. PubMed ID: 28110069 [TBL] [Abstract][Full Text] [Related]
11. Ternary nanoparticles composed of cationic solid lipid nanoparticles, protamine, and DNA for gene delivery. He SN; Li YL; Yan JJ; Zhang W; Du YZ; Yu HY; Hu FQ; Yuan H Int J Nanomedicine; 2013; 8():2859-69. PubMed ID: 23990715 [TBL] [Abstract][Full Text] [Related]
12. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery. He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888 [TBL] [Abstract][Full Text] [Related]
13. Structure and kinetics of lipid-nucleic acid complexes. Dan N; Danino D Adv Colloid Interface Sci; 2014 Mar; 205():230-9. PubMed ID: 24529969 [TBL] [Abstract][Full Text] [Related]
14. Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Zuhorn IS; Bakowsky U; Polushkin E; Visser WH; Stuart MC; Engberts JB; Hoekstra D Mol Ther; 2005 May; 11(5):801-10. PubMed ID: 15851018 [TBL] [Abstract][Full Text] [Related]
15. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform. Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139 [TBL] [Abstract][Full Text] [Related]
16. A Method for Using Cell-Penetrating Peptides for Loading Plasmid DNA into Secreted Extracellular Vesicles. Nebogatova J; Härk HH; Puskar A; Porosk L; Guazzi P; Dowaidar M; Langel Ü; Kurrikoff K Biomolecules; 2023 Dec; 13(12):. PubMed ID: 38136622 [TBL] [Abstract][Full Text] [Related]
17. Mixing-sequence-dependent nucleic acid complexation and gene transfer efficiency by polyethylenimine. Cho SK; Dang C; Wang X; Ragan R; Kwon YJ Biomater Sci; 2015 Jul; 3(7):1124-33. PubMed ID: 26221945 [TBL] [Abstract][Full Text] [Related]
18. Viral vector mimicking and nucleus targeted nanoparticles based on dexamethasone polyethylenimine nanoliposomes: Preparation and evaluation of transfection efficiency. Malaekeh-Nikouei B; Gholami L; Asghari F; Askarian S; Barzegar S; Rezaee M; Kazemi Oskuee R Colloids Surf B Biointerfaces; 2018 May; 165():252-261. PubMed ID: 29494955 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. Song LY; Ahkong QF; Rong Q; Wang Z; Ansell S; Hope MJ; Mui B Biochim Biophys Acta; 2002 Jan; 1558(1):1-13. PubMed ID: 11750259 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic Production and Application of Lipid Nanoparticles for Nucleic Acid Transfection. Thomas A; M Garg S; De Souza RAG; Ouellet E; Tharmarajah G; Reichert D; Ordobadi M; Ip S; Ramsay EC Methods Mol Biol; 2018; 1792():193-203. PubMed ID: 29797261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]