These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39056929)

  • 1. Energy, Exergetic, and Thermoeconomic Analyses of Hydrogen-Fueled 1-kW Proton-Exchange Membrane Fuel Cell.
    Yoo Y; Lee SY; Seo SH; Oh SD; Kwak HY
    Entropy (Basel); 2024 Jun; 26(7):. PubMed ID: 39056929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Analysis Based on Sustainability Exergy Indicators of High-Temperature Proton Exchange Membrane Fuel Cell.
    Guo X; Xu B; Ma Z; Li Y; Li D
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exergetic Performance Coefficient Analysis and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell.
    Li D; Li Y; Ma Z; Zheng M; Lu Z
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Irreversibility-Based Criterion to Determine the Cost Formation of Residues in a Three-Pressure-Level Combined Cycle.
    Denise LH; Vicente TE; Sergio CH; Martín SP; Teresa LA; Raúl LL
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite Time Thermodynamic Modeling and Performance Analysis of High-Temperature Proton Exchange Membrane Fuel Cells.
    Li D; Ma Z; Shao W; Li Y; Guo X
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic Modeling and Performance Analysis of Vehicular High-Temperature Proton Exchange Membrane Fuel Cell System.
    Li Y; Li D; Ma Z; Zheng M; Lu Z
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation and economic analysis of integrated solid oxide electrolyzer cell and proton exchange membrane fuel cell for power generation.
    Abdollahipour A; Sayyaadi H
    Heliyon; 2024 Jul; 10(14):e34631. PubMed ID: 39113979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic Modeling and Exergy Analysis of A Combined High-Temperature Proton Exchange Membrane Fuel Cell and ORC System for Automotive Applications.
    Li Y; Yang M; Ma Z; Zheng M; Song H; Guo X
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic Analysis of a Solid Oxide Fuel Cell Based Combined Cooling, Heating, and Power System Integrated with Biomass Gasification.
    Cui Z; Wang J; Lior N
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of exergy and exergy economic evaluation of different geothermal cogeneration systems for optimal waste energy recovery.
    Guo Q; Khanmohammadi S
    Chemosphere; 2023 Oct; 339():139586. PubMed ID: 37516323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exergy destruction analysis of a power generation system utilizing the cold energy of LNG.
    Wan T; Bai B; Zhou W
    Heliyon; 2023 Sep; 9(9):e19393. PubMed ID: 37809443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Flow Channels in a PEM Fuel Cell Based on a Multiobjective Evaluation.
    Jiang D; Wang F; Li X; Tan J; Wang C
    ACS Omega; 2024 Jan; 9(1):1683-1694. PubMed ID: 38222584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exergetic Analysis of a Cryogenic Air Separation Unit.
    Bucsa S; Serban A; Balan MC; Ionita C; Nastase G; Dobre C; Dobrovicescu A
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of a novel plan for thermochemical cycles and PEM fuel cells to produce hydrogen and power: Application of environmental perspective.
    Yu D; Duan C; Gu B
    Chemosphere; 2023 Sep; 334():138935. PubMed ID: 37211169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the Exergy Transfer Law for the Irreversible Process in the Waxy Crude Oil Pipeline Transportation.
    Cheng Q; Zheng A; Song S; Wu H; Lv L; Liu Y
    Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exergetic analysis of direct contact membrane distillation (DCMD) using PVDF hollow fiber membranes for the desalination brine treatment.
    Zaheer AHM; Gzara L; Iqbal A; Macedonio F; Albeirutty M; Drioli E
    Heliyon; 2023 Oct; 9(10):e20927. PubMed ID: 37876422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Exergoeconomic Analysis of a Gas-Type Industrial Drying System of Black Tea.
    Zeng Z; Li B; Han C; Wu W; Wang X; Xu J; Zheng Z; Ma B; Hu Z
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exergy-economic assessment of a hybrid power, cooling and heating generation system based on SOFC.
    Zahedi R; Forootan MM; Ahmadi R; Keshavarzzadeh M
    Heliyon; 2023 May; 9(5):e16164. PubMed ID: 37305502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation.
    Dorosz P; Wojcieszak P; Malecha Z
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Exergetic, Energetic and Techno-Economic Analyses on a Gas-Type Industrial Drying System of Black Tea.
    Zeng Z; Li B; Han C; Wu W; Chen T; Dong C; Gao C; He Z; Zhang F
    Foods; 2022 Oct; 11(20):. PubMed ID: 37431027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.