These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 39057467)
1. Physically Crosslinked Poly(methacrylic acid)/Gelatin Hydrogels with Excellent Fatigue Resistance and Shape Memory Properties. Ugrinovic V; Markovic M; Bozic B; Panic V; Veljovic D Gels; 2024 Jul; 10(7):. PubMed ID: 39057467 [TBL] [Abstract][Full Text] [Related]
2. Super-strong and tough poly(vinyl alcohol)/poly(acrylic acid) hydrogels reinforced by hydrogen bonding. Liu T; Jiao C; Peng X; Chen YN; Chen Y; He C; Liu R; Wang H J Mater Chem B; 2018 Dec; 6(48):8105-8114. PubMed ID: 32254930 [TBL] [Abstract][Full Text] [Related]
3. Tough, Stretchable, Compressive Novel Polymer/Graphene Oxide Nanocomposite Hydrogels with Excellent Self-Healing Performance. Pan C; Liu L; Chen Q; Zhang Q; Guo G ACS Appl Mater Interfaces; 2017 Nov; 9(43):38052-38061. PubMed ID: 29019393 [TBL] [Abstract][Full Text] [Related]
4. Developing super tough gelatin-based hydrogels by incorporating linear poly(methacrylic acid) to facilitate sacrificial hydrogen bonding. Zhang HJ; Wang L; Wang X; Han Q; You X Soft Matter; 2020 May; 16(20):4723-4727. PubMed ID: 32421136 [TBL] [Abstract][Full Text] [Related]
5. Tough supramolecular hydrogels of poly( Ma C; Du C; Tong QB; Zhang XN; Du M; Zheng Q; Wu ZL Soft Matter; 2024 Sep; 20(37):7448-7456. PubMed ID: 39258514 [TBL] [Abstract][Full Text] [Related]
6. Tough combinatorial poly(urethane-isocyanurate) polymer networks and hydrogels synthesized by the trimerization of mixtures of NCO-prepolymers. Driest PJ; Dijkstra DJ; Stamatialis D; Grijpma DW Acta Biomater; 2020 Mar; 105():87-96. PubMed ID: 31978622 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable, anti-adhesive and tough polyurethane hydrogels crosslinked by triol crosslinkers. Xiao K; Wang Z; Wu Y; Lin W; He Y; Zhan J; Luo F; Li Z; Li J; Tan H; Fu Q J Biomed Mater Res A; 2019 Oct; 107(10):2205-2221. PubMed ID: 31116494 [TBL] [Abstract][Full Text] [Related]
8. How can multi-bond network hydrogels dissipate energy more effectively: an investigation on the relationship between network structure and properties. Xu H; Shi FK; Liu XY; Zhong M; Xie XM Soft Matter; 2020 May; 16(18):4407-4413. PubMed ID: 32323693 [TBL] [Abstract][Full Text] [Related]
9. Hofmeister effect-enhanced gelatin/oxidized dextran hydrogels with improved mechanical properties and biocompatibility for wound healing. Zhao B; Zhang Y; Li D; Mo X; Pan J Acta Biomater; 2022 Oct; 151():235-253. PubMed ID: 35961521 [TBL] [Abstract][Full Text] [Related]
10. Dual Physically Cross-Linked Double Network Hydrogels with High Mechanical Strength, Fatigue Resistance, Notch-Insensitivity, and Self-Healing Properties. Yuan N; Xu L; Wang H; Fu Y; Zhang Z; Liu L; Wang C; Zhao J; Rong J ACS Appl Mater Interfaces; 2016 Dec; 8(49):34034-34044. PubMed ID: 27960423 [TBL] [Abstract][Full Text] [Related]
12. High strength and self-healable gelatin/polyacrylamide double network hydrogels. Yan X; Chen Q; Zhu L; Chen H; Wei D; Chen F; Tang Z; Yang J; Zheng J J Mater Chem B; 2017 Oct; 5(37):7683-7691. PubMed ID: 32264369 [TBL] [Abstract][Full Text] [Related]
13. Tough, self-healing and injectable dynamic nanocomposite hydrogel based on gelatin and sodium alginate. Gao LT; Chen YM; Aziz Y; Wei W; Zhao XY; He Y; Li J; Li H; Miyatake H; Ito Y Carbohydr Polym; 2024 Apr; 330():121812. PubMed ID: 38368083 [TBL] [Abstract][Full Text] [Related]
14. Genipin-crosslinked gelatin-based composite hydrogels reinforced with amino-functionalized microfibrillated cellulose. Rao Z; Dong Y; Liu J; Zheng X; Pei Y; Tang K Int J Biol Macromol; 2022 Dec; 222(Pt B):3155-3167. PubMed ID: 36243153 [TBL] [Abstract][Full Text] [Related]
15. Highly tough, anti-fatigue and rapidly self-recoverable hydrogels reinforced with core-shell inorganic-organic hybrid latex particles. Xia S; Song S; Ren X; Gao G Soft Matter; 2017 Sep; 13(36):6059-6067. PubMed ID: 28776059 [TBL] [Abstract][Full Text] [Related]
16. Succinoglycan dialdehyde-reinforced gelatin hydrogels with toughness and thermal stability. Kim S; Jeong D; Lee H; Kim D; Jung S Int J Biol Macromol; 2020 Apr; 149():281-289. PubMed ID: 31982524 [TBL] [Abstract][Full Text] [Related]
17. Highly Tough, Stretchable, and Enzymatically Degradable Hydrogels Modulated by Bioinspired Hydrophobic β-Sheet Peptides. Xiang Y; Zhang J; Mao H; Yan Z; Wang X; Bao C; Zhu L Biomacromolecules; 2021 Nov; 22(11):4846-4856. PubMed ID: 34706536 [TBL] [Abstract][Full Text] [Related]
18. Synergy of Hofmeister effect and ligand crosslinking enabled the facile fabrication of super-strong, pre-stretching-enhanced gelatin-based hydrogels. Zeng C; Wu P; Guo J; Zhao N; Ke C; Liu G; Zhou F; Liu W Soft Matter; 2022 Nov; 18(45):8675-8686. PubMed ID: 36349798 [TBL] [Abstract][Full Text] [Related]
19. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels. Suzuki A; Sasaki S Proc Inst Mech Eng H; 2015 Dec; 229(12):828-44. PubMed ID: 26614797 [TBL] [Abstract][Full Text] [Related]
20. Structurally Dynamic Gelatin-Based Hydrogels with Self-Healing, Shape Memory, and Cytocompatible Properties for 4D Printing. Wang Z; Gu J; Zhang D; Zhang Y; Chen J Biomacromolecules; 2023 Jan; 24(1):109-117. PubMed ID: 36461924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]