These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 39057487)

  • 1. Microfluidic Rheology: An Innovative Method for Viscosity Measurement of Gels and Various Pharmaceuticals.
    Vilimi Z; Pápay ZE; Basa B; Orekhova X; Kállai-Szabó N; Antal I
    Gels; 2024 Jul; 10(7):. PubMed ID: 39057487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids.
    Mustafa A; Eser A; Aksu AC; Kiraz A; Tanyeri M; Erten A; Yalcin O
    Anal Chim Acta; 2020 Oct; 1135():107-115. PubMed ID: 33070846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of oleic acid on the rheology and in vitro release of lumiracoxib from poloxamer gels.
    Moreira TS; de Sousa VP; Pierre MB
    J Pharm Pharm Sci; 2010; 13(2):286-302. PubMed ID: 20816013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type.
    Kolman M; Smith C; Chakrabarty D; Amin S
    Int J Cosmet Sci; 2021 Dec; 43(6):748-763. PubMed ID: 34741768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.
    Kim BJ; Lee SY; Jee S; Atajanov A; Yang S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of non-Newtonian liquids using a microfluidic capillary viscometer.
    Srivastava N; Burns MA
    Anal Chem; 2006 Mar; 78(5):1690-6. PubMed ID: 16503624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line rheological characterization of semi-solid formulations.
    Qwist PK; Sander C; Okkels F; Jessen V; Baldursdottir S; Rantanen J
    Eur J Pharm Sci; 2019 Feb; 128():36-42. PubMed ID: 30447283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of pH Values on the Rheological, Textural and Release Properties of Carbomer Polacril
    Maslii Y; Ruban O; Kasparaviciene G; Kalveniene Z; Materiienko A; Ivanauskas L; Mazurkeviciute A; Kopustinskiene DM; Bernatoniene J
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33138200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of indomethacin Carbopol ETD 2001 gels and the influence of storage time and temperature on their stability.
    Shawesh AM; Kaukonen A; Kallioinen S; Antikainen O; Yliruusi J
    Pharmazie; 2003 Feb; 58(2):130-5. PubMed ID: 12641331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological characterization of topical carbomer gels neutralized to different pH.
    Islam MT; Rodríguez-Hornedo N; Ciotti S; Ackermann C
    Pharm Res; 2004 Jul; 21(7):1192-9. PubMed ID: 15290859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic rheology of non-Newtonian liquids.
    Girardo S; Cingolani R; Pisignano D
    Anal Chem; 2007 Aug; 79(15):5856-61. PubMed ID: 17602569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological characterization and injection forces of concentrated protein formulations: an alternative predictive model for non-Newtonian solutions.
    Allmendinger A; Fischer S; Huwyler J; Mahler HC; Schwarb E; Zarraga IE; Mueller R
    Eur J Pharm Biopharm; 2014 Jul; 87(2):318-28. PubMed ID: 24560966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer.
    Allahham A; Stewart P; Marriott J; Mainwaring DE
    Int J Pharm; 2004 Feb; 270(1-2):139-48. PubMed ID: 14726130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of near-infrared for quantitative measurement of viscosity and concentration of active ingredient in pharmaceutical gel.
    Donoso M; Ghaly ES
    Pharm Dev Technol; 2006; 11(3):389-97. PubMed ID: 16895849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed microfluidic viscometer based on the co-flowing stream.
    Hong H; Song JM; Yeom E
    Biomicrofluidics; 2019 Jan; 13(1):014104. PubMed ID: 30867875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel polydimethylsiloxane microfluidic viscometer fabricated using microwire-molding.
    Zou M; Cai S; Zhao Z; Chen L; Zhao Y; Fan X; Chen S
    Rev Sci Instrum; 2015 Oct; 86(10):104302. PubMed ID: 26520971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological characterization of Poloxamer 407 lidocaine hydrochloride gels.
    Ricci EJ; Bentley MV; Farah M; Bretas RE; Marchetti JM
    Eur J Pharm Sci; 2002 Nov; 17(3):161-7. PubMed ID: 12393144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a simple droplet-based microfluidic capillary viscometer for low-viscosity Newtonian fluids.
    DeLaMarre MF; Keyzer A; Shippy SA
    Anal Chem; 2015 May; 87(9):4649-57. PubMed ID: 25825941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of cost-effective and efficient paper-based device for viscosity measurement.
    Rayaprolu A; Srivastava SK; Anand K; Bhati L; Asthana A; Rao CM
    Anal Chim Acta; 2018 Dec; 1044():86-92. PubMed ID: 30442408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic viscometers for shear rheology of complex fluids and biofluids.
    Gupta S; Wang WS; Vanapalli SA
    Biomicrofluidics; 2016 Jul; 10(4):043402. PubMed ID: 27478521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.