These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 39057487)
1. Microfluidic Rheology: An Innovative Method for Viscosity Measurement of Gels and Various Pharmaceuticals. Vilimi Z; Pápay ZE; Basa B; Orekhova X; Kállai-Szabó N; Antal I Gels; 2024 Jul; 10(7):. PubMed ID: 39057487 [TBL] [Abstract][Full Text] [Related]
2. A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids. Mustafa A; Eser A; Aksu AC; Kiraz A; Tanyeri M; Erten A; Yalcin O Anal Chim Acta; 2020 Oct; 1135():107-115. PubMed ID: 33070846 [TBL] [Abstract][Full Text] [Related]
3. Influence of oleic acid on the rheology and in vitro release of lumiracoxib from poloxamer gels. Moreira TS; de Sousa VP; Pierre MB J Pharm Pharm Sci; 2010; 13(2):286-302. PubMed ID: 20816013 [TBL] [Abstract][Full Text] [Related]
4. Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type. Kolman M; Smith C; Chakrabarty D; Amin S Int J Cosmet Sci; 2021 Dec; 43(6):748-763. PubMed ID: 34741768 [TBL] [Abstract][Full Text] [Related]
5. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate. Kim BJ; Lee SY; Jee S; Atajanov A; Yang S Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632151 [TBL] [Abstract][Full Text] [Related]
6. Analysis of non-Newtonian liquids using a microfluidic capillary viscometer. Srivastava N; Burns MA Anal Chem; 2006 Mar; 78(5):1690-6. PubMed ID: 16503624 [TBL] [Abstract][Full Text] [Related]
8. The Influence of pH Values on the Rheological, Textural and Release Properties of Carbomer Polacril Maslii Y; Ruban O; Kasparaviciene G; Kalveniene Z; Materiienko A; Ivanauskas L; Mazurkeviciute A; Kopustinskiene DM; Bernatoniene J Molecules; 2020 Oct; 25(21):. PubMed ID: 33138200 [TBL] [Abstract][Full Text] [Related]
9. Development of indomethacin Carbopol ETD 2001 gels and the influence of storage time and temperature on their stability. Shawesh AM; Kaukonen A; Kallioinen S; Antikainen O; Yliruusi J Pharmazie; 2003 Feb; 58(2):130-5. PubMed ID: 12641331 [TBL] [Abstract][Full Text] [Related]
10. Rheological characterization of topical carbomer gels neutralized to different pH. Islam MT; Rodríguez-Hornedo N; Ciotti S; Ackermann C Pharm Res; 2004 Jul; 21(7):1192-9. PubMed ID: 15290859 [TBL] [Abstract][Full Text] [Related]
12. Rheological characterization and injection forces of concentrated protein formulations: an alternative predictive model for non-Newtonian solutions. Allmendinger A; Fischer S; Huwyler J; Mahler HC; Schwarb E; Zarraga IE; Mueller R Eur J Pharm Biopharm; 2014 Jul; 87(2):318-28. PubMed ID: 24560966 [TBL] [Abstract][Full Text] [Related]
13. Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer. Allahham A; Stewart P; Marriott J; Mainwaring DE Int J Pharm; 2004 Feb; 270(1-2):139-48. PubMed ID: 14726130 [TBL] [Abstract][Full Text] [Related]
14. Use of near-infrared for quantitative measurement of viscosity and concentration of active ingredient in pharmaceutical gel. Donoso M; Ghaly ES Pharm Dev Technol; 2006; 11(3):389-97. PubMed ID: 16895849 [TBL] [Abstract][Full Text] [Related]
15. 3D printed microfluidic viscometer based on the co-flowing stream. Hong H; Song JM; Yeom E Biomicrofluidics; 2019 Jan; 13(1):014104. PubMed ID: 30867875 [TBL] [Abstract][Full Text] [Related]
16. A novel polydimethylsiloxane microfluidic viscometer fabricated using microwire-molding. Zou M; Cai S; Zhao Z; Chen L; Zhao Y; Fan X; Chen S Rev Sci Instrum; 2015 Oct; 86(10):104302. PubMed ID: 26520971 [TBL] [Abstract][Full Text] [Related]