These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39058589)

  • 1. Protocol for tissue-specific mutagenesis with fluorescent labeling in zebrafish.
    Luo J; Lu C; Yang X
    STAR Protoc; 2024 Sep; 5(3):103207. PubMed ID: 39058589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for generating mutant zebrafish using CRISPR-Cas9 followed by quantitative evaluation of vascular formation.
    Luo J; Lu C; Wang M; Yang X
    STAR Protoc; 2023 Dec; 4(4):102753. PubMed ID: 38041822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized CRISPR-RfxCas13d system for RNA targeting in zebrafish embryos.
    Hernandez-Huertas L; Kushawah G; Diaz-Moscoso A; Tomas-Gallardo L; Moreno-Sanchez I; da Silva Pescador G; Bazzini AA; Moreno-Mateos MA
    STAR Protoc; 2022 Mar; 3(1):101058. PubMed ID: 35005640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9-Mediated Genomic Deletions Protocol in Zebrafish.
    Amorim JP; Bordeira-Carriço R; Gali-Macedo A; Perrod C; Bessa J
    STAR Protoc; 2020 Dec; 1(3):100208. PubMed ID: 33377102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.
    Yin L; Maddison LA; Li M; Kara N; LaFave MC; Varshney GK; Burgess SM; Patton JG; Chen W
    Genetics; 2015 Jun; 200(2):431-41. PubMed ID: 25855067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clonal analysis of gene loss of function and tissue-specific gene deletion in zebrafish via CRISPR/Cas9 technology.
    De Santis F; Di Donato V; Del Bene F
    Methods Cell Biol; 2016; 135():171-88. PubMed ID: 27443925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational pipeline for designing guide RNAs for mismatch-CRISPRi.
    van Gestel J; Hawkins JS; Todor H; Gross CA
    STAR Protoc; 2021 Jun; 2(2):100521. PubMed ID: 34027480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
    Burger A; Lindsay H; Felker A; Hess C; Anders C; Chiavacci E; Zaugg J; Weber LM; Catena R; Jinek M; Robinson MD; Mosimann C
    Development; 2016 Jun; 143(11):2025-37. PubMed ID: 27130213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized protocol for gene editing in adipocytes using CRISPR-Cas9 technology.
    Qiu Y; Ding Q
    STAR Protoc; 2021 Mar; 2(1):100307. PubMed ID: 33554142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for establishing knockout cell clones by deletion of a large gene fragment using CRISPR-Cas9 with multiple guide RNAs.
    Saito AC; Higashi T; Chiba H
    STAR Protoc; 2024 Sep; 5(3):103179. PubMed ID: 38972040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating mutant
    Li HH; Li JC; Su MP; Liu KL; Chen CH
    STAR Protoc; 2021 Jun; 2(2):100432. PubMed ID: 33899015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9-induced gene knockout in zebrafish.
    Medishetti R; Balamurugan K; Yadavalli K; Rani R; Sevilimedu A; Challa AK; Parsa K; Chatti K
    STAR Protoc; 2022 Dec; 3(4):101779. PubMed ID: 36317180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio).
    Uusi-Mäkelä MIE; Barker HR; Bäuerlein CA; Häkkinen T; Nykter M; Rämet M
    PLoS One; 2018; 13(4):e0196238. PubMed ID: 29684067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System.
    Yin L; Jao LE; Chen W
    Methods Mol Biol; 2015; 1332():205-17. PubMed ID: 26285757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR deactivation in mammalian cells using photocleavable guide RNAs.
    Zou RS; Liu Y; Ha T
    STAR Protoc; 2021 Dec; 2(4):100909. PubMed ID: 34746867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish.
    Varshney GK; Carrington B; Pei W; Bishop K; Chen Z; Fan C; Xu L; Jones M; LaFave MC; Ledin J; Sood R; Burgess SM
    Nat Protoc; 2016 Dec; 11(12):2357-2375. PubMed ID: 27809318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol to target a promoter region in human embryonic kidney cells using the CRISPR-dCas9 system for single-locus proteomics.
    Alkhayer R; Ponath V; Pogge von Strandmann E
    STAR Protoc; 2024 Jun; 5(2):103045. PubMed ID: 38691460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for in vivo CRISPR screening targeting murine testicular cells.
    Noguchi Y; Maruoka M; Suzuki J
    STAR Protoc; 2024 Sep; 5(3):103306. PubMed ID: 39269899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis.
    Lee RT; Ng AS; Ingham PW
    PLoS One; 2016; 11(11):e0166020. PubMed ID: 27832146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.