These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 39058783)

  • 1. Emergence and reconfiguration of modular structure for artificial neural networks during continual familiarity detection.
    Gu S; Mattar MG; Tang H; Pan G
    Sci Adv; 2024 Jul; 10(30):eadm8430. PubMed ID: 39058783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
    Ellefsen KO; Mouret JB; Clune J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004128. PubMed ID: 25837826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection.
    Tyulmankov D; Yang GR; Abbott LF
    Neuron; 2022 Feb; 110(3):544-557.e8. PubMed ID: 34861149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embracing Change: Continual Learning in Deep Neural Networks.
    Hadsell R; Rao D; Rusu AA; Pascanu R
    Trends Cogn Sci; 2020 Dec; 24(12):1028-1040. PubMed ID: 33158755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational models can distinguish the contribution from different mechanisms to familiarity recognition.
    Read J; Delhaye E; Sougné J
    Hippocampus; 2024 Jan; 34(1):36-50. PubMed ID: 37985213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beneficial Perturbation Network for Designing General Adaptive Artificial Intelligence Systems.
    Wen S; Rios A; Ge Y; Itti L
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3778-3791. PubMed ID: 33596177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing continual task learning in minds and machines.
    Flesch T; Balaguer J; Dekker R; Nili H; Summerfield C
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):E10313-E10322. PubMed ID: 30322916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classic Hebbian learning endows feed-forward networks with sufficient adaptability in challenging reinforcement learning tasks.
    Burns TF
    J Neurophysiol; 2021 Jun; 125(6):2034-2037. PubMed ID: 33909499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming catastrophic forgetting in neural networks.
    Kirkpatrick J; Pascanu R; Rabinowitz N; Veness J; Desjardins G; Rusu AA; Milan K; Quan J; Ramalho T; Grabska-Barwinska A; Hassabis D; Clopath C; Kumaran D; Hadsell R
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3521-3526. PubMed ID: 28292907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances at the Interface of Neuroscience and Artificial Neural Networks.
    Cohen Y; Engel TA; Langdon C; Lindsay GW; Ott T; Peters MAK; Shine JM; Breton-Provencher V; Ramaswamy S
    J Neurosci; 2022 Nov; 42(45):8514-8523. PubMed ID: 36351830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning concepts applied to oral pathology and oral medicine: A convolutional neural networks' approach.
    Araújo ALD; da Silva VM; Kudo MS; de Souza ESC; Saldivia-Siracusa C; Giraldo-Roldán D; Lopes MA; Vargas PA; Khurram SA; Pearson AT; Kowalski LP; de Carvalho ACPLF; Santos-Silva AR; Moraes MC
    J Oral Pathol Med; 2023 Feb; 52(2):109-118. PubMed ID: 36599081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal learning rules for familiarity detection.
    Greve A; Sterratt DC; Donaldson DI; Willshaw DJ; van Rossum MC
    Biol Cybern; 2009 Jan; 100(1):11-9. PubMed ID: 19002710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modularity Facilitates Classification Performance of Spiking Neural Networks for Decoding Cortical Spike Trains.
    Liu T; Ning Y; Liu P; Zhang Y; Chua Y; Chen W; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization.
    Masse NY; Grant GD; Freedman DJ
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):E10467-E10475. PubMed ID: 30315147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model of familiarity detection for natural pictures, abstract images, and random patterns: Combination of deep learning and anti-Hebbian training.
    Kazanovich Y; Borisyuk R
    Neural Netw; 2021 Nov; 143():628-637. PubMed ID: 34343776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic review of approaches to detection and classification of skin cancer using artificial intelligence: Development and prospects.
    Lyakhova UA; Lyakhov PA
    Comput Biol Med; 2024 Aug; 178():108742. PubMed ID: 38875908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence for skin permeability prediction: deep learning.
    Ita K; Roshanaei S
    J Drug Target; 2024 Dec; 32(3):334-346. PubMed ID: 38258521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.
    Fu X
    Comput Intell Neurosci; 2021; 2021():2691346. PubMed ID: 34925485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inductive biases of neural network modularity in spatial navigation.
    Zhang R; Pitkow X; Angelaki DE
    Sci Adv; 2024 Jul; 10(29):eadk1256. PubMed ID: 39028809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.