These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 39059176)
21. Relation between the catalytic efficiency of the synthetic analogues of catechol oxidase with their electrochemical property in the free state and substrate-bound state. Chakraborty P; Adhikary J; Ghosh B; Sanyal R; Chattopadhyay SK; Bauzá A; Frontera A; Zangrando E; Das D Inorg Chem; 2014 Aug; 53(16):8257-69. PubMed ID: 25072328 [TBL] [Abstract][Full Text] [Related]
22. Dopamine polymerization promoted by a catecholase biomimetic Cu de Oliveira JA; da Silva MP; de Souza B; Camargo TP; Szpoganicz B; Neves A; Bortoluzzi AJ Dalton Trans; 2016 Oct; 45(39):15294-15297. PubMed ID: 27722365 [TBL] [Abstract][Full Text] [Related]
23. pH-controlled change of the metal coordination in a dicopper(II) complex of the ligand H-BPMP: crystal structures, magnetic properties, and catecholase activity. Torelli S; Belle C; Gautier-Luneau I; Pierre JL; Saint-Aman E; Latour JM; Le Pape L; Luneau D Inorg Chem; 2000 Aug, 7; 39(16):3526-36. PubMed ID: 11196811 [TBL] [Abstract][Full Text] [Related]
24. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination. Mandal S; Mukherjee J; Lloret F; Mukherjee R Inorg Chem; 2012 Dec; 51(24):13148-61. PubMed ID: 23194383 [TBL] [Abstract][Full Text] [Related]
25. Mixed ligand copper(II) complexes of N,N-bis(benzimidazol-2-ylmethyl)amine (BBA) with diimine co-ligands: efficient chemical nuclease and protease activities and cytotoxicity. Loganathan R; Ramakrishnan S; Suresh E; Riyasdeen A; Akbarsha MA; Palaniandavar M Inorg Chem; 2012 May; 51(10):5512-32. PubMed ID: 22559171 [TBL] [Abstract][Full Text] [Related]
26. Synthesis, crystal structures, magnetic properties and catecholase activity of double phenoxido-bridged penta-coordinated dinuclear nickel(II) complexes derived from reduced Schiff-base ligands: mechanistic inference of catecholase activity. Biswas A; Das LK; Drew MG; Aromí G; Gamez P; Ghosh A Inorg Chem; 2012 Aug; 51(15):7993-8001. PubMed ID: 22759340 [TBL] [Abstract][Full Text] [Related]
27. Synthesis, magnetostructural correlation, and catalytic promiscuity of unsymmetric dinuclear copper(II) complexes: models for catechol oxidases and hydrolases. Osório RE; Peralta RA; Bortoluzzi AJ; de Almeida VR; Szpoganicz B; Fischer FL; Terenzi H; Mangrich AS; Mantovani KM; Ferreira DE; Rocha WR; Haase W; Tomkowicz Z; dos Anjos A; Neves A Inorg Chem; 2012 Feb; 51(3):1569-89. PubMed ID: 22260179 [TBL] [Abstract][Full Text] [Related]
28. A dopaquinone model that mimics the water addition step of cofactor biogenesis in copper amine oxidases. Ling KQ; Sayre LM J Am Chem Soc; 2005 Apr; 127(13):4777-84. PubMed ID: 15796543 [TBL] [Abstract][Full Text] [Related]
29. Mechanistic insight on the catecholase activity of dinuclear copper complexes with distant metal centers. Mendoza-Quijano MR; Ferrer-Sueta G; Flores-Álamo M; Aliaga-Alcalde N; Gómez-Vidales V; Ugalde-Saldívar VM; Gasque L Dalton Trans; 2012 Apr; 41(16):4985-97. PubMed ID: 22411076 [TBL] [Abstract][Full Text] [Related]
30. Copper(II) complexes of aminocarbohydrate beta-ketoenaminic ligands: efficient catalysts in catechol oxidation. Wegner R; Gottschaldt M; Görls H; Jäger EG; Klemm D Chemistry; 2001 May; 7(10):2143-57. PubMed ID: 11411987 [TBL] [Abstract][Full Text] [Related]
31. Substrate binding in catechol oxidase activity: biomimetic approach. Torelli S; Belle C; Hamman S; Pierre JL; Saint-Aman E Inorg Chem; 2002 Jul; 41(15):3983-9. PubMed ID: 12132925 [TBL] [Abstract][Full Text] [Related]
32. Mononuclear [(BP)(2)MX](n+) (M = Cu(2+), Co(2+), Zn(2+); X = OH(2), Cl(-)) complexes with a new biphenyl appended N-bidentate ligand: structural, spectroscopic, solution equilibrium and ligand dynamic studies. Sabiah S; Varghese B; Murthy NN Dalton Trans; 2009 Nov; (44):9770-80. PubMed ID: 19885522 [TBL] [Abstract][Full Text] [Related]
33. Comparison of mononuclear and dinuclear copper(II) biomimetic complexes: spectroelectrochemical mechanistic study of their catalytic pathways. Sýs M; Kocábová J; Klikarová J; Novák M; Jirásko R; Obluková M; Mikysek T; Sokolová R Dalton Trans; 2022 Sep; 51(36):13703-13715. PubMed ID: 36001067 [TBL] [Abstract][Full Text] [Related]
34. Roles of basicity and steric crowding of anionic coligands in catechol oxidase-like activity of Cu(ii)-Mn(ii) complexes. Dutta S; Bhunia P; Mayans J; Drew MGB; Ghosh A Dalton Trans; 2020 Aug; 49(32):11268-11281. PubMed ID: 32760992 [TBL] [Abstract][Full Text] [Related]
35. Facile synthesis of a new Cu(ii) complex with an unsymmetrical ligand and its use as an O Dutta S; Mayans J; Ghosh A Dalton Trans; 2020 Jan; 49(4):1276-1291. PubMed ID: 31909778 [TBL] [Abstract][Full Text] [Related]
36. A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(II) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations. Mutti FG; Gullotti M; Casella L; Santagostini L; Pagliarin R; Andersson KK; Iozzi MF; Zoppellaro G Dalton Trans; 2011 May; 40(20):5436-57. PubMed ID: 21298193 [TBL] [Abstract][Full Text] [Related]
37. Copper (II) complexes of the anti-inflammatory drug naproxen and 3-pyridylmethanol as auxiliary ligand. Characterization, superoxide dismutase and catecholase--mimetic activities. Abuhijleh AL; Khalaf J Eur J Med Chem; 2010 Sep; 45(9):3811-7. PubMed ID: 20605277 [TBL] [Abstract][Full Text] [Related]
38. Heterobridged dinuclear, tetranuclear, dinuclear-based 1-d, and heptanuclear-based 1-D complexes of copper(II) derived from a dinucleating ligand: syntheses, structures, magnetochemistry, spectroscopy, and catecholase activity. Majumder S; Sarkar S; Sasmal S; Sañudo EC; Mohanta S Inorg Chem; 2011 Aug; 50(16):7540-54. PubMed ID: 21776948 [TBL] [Abstract][Full Text] [Related]
39. Oxygen Delivery as a Limiting Factor in Modelling Dicopper(II) Oxidase Reactivity. Gülzow J; Hörner G; Strauch P; Stritt A; Irran E; Grohmann A Chemistry; 2017 May; 23(29):7009-7023. PubMed ID: 28094884 [TBL] [Abstract][Full Text] [Related]
40. The crystal and molecular structures of three copper-containing complexes and their activities in mimicking galactose oxidase. Dimeska R; Wikaira J; Mockler GM; Butcher RJ Acta Crystallogr C Struct Chem; 2019 May; 75(Pt 5):538-544. PubMed ID: 31062710 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]