These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 39059501)
41. Facile preparation of a metal-phenolic network-based lymph node targeting nanovaccine for antitumor immunotherapy. Su Q; Liu Z; Du R; Chen X; Chen L; Fu Z; Luo X; Yang Y; Shi X Acta Biomater; 2023 Mar; 158():510-524. PubMed ID: 36603733 [TBL] [Abstract][Full Text] [Related]
42. Leveraging Senescent Cancer Cell Membrane to Potentiate Cancer Immunotherapy Through Biomimetic Nanovaccine. Yang C; Chen Y; Liu J; Zhang W; He Y; Chen F; Xie X; Tang J; Guan S; Shao D; Wang Z; Wang L Adv Sci (Weinh); 2024 Aug; 11(30):e2400630. PubMed ID: 38867377 [TBL] [Abstract][Full Text] [Related]
43. Nanovaccine Incorporated with Hydroxychloroquine Enhances Antigen Cross-Presentation and Promotes Antitumor Immune Responses. Liu J; Liu X; Han Y; Zhang J; Liu D; Ma G; Li C; Liu L; Kong D ACS Appl Mater Interfaces; 2018 Sep; 10(37):30983-30993. PubMed ID: 30136844 [TBL] [Abstract][Full Text] [Related]
44. Dendritic cell-derived exosomes stimulate stronger CD8+ CTL responses and antitumor immunity than tumor cell-derived exosomes. Hao S; Bai O; Yuan J; Qureshi M; Xiang J Cell Mol Immunol; 2006 Jun; 3(3):205-11. PubMed ID: 16893501 [TBL] [Abstract][Full Text] [Related]
45. Genetically Engineered Cytomembrane Nanovaccines for Cancer Immunotherapy. Pan Y; Wu X; Liu L; Zhao C; Zhang J; Yang S; Pan P; Huang Q; Zhao XZ; Tian R; Rao L Adv Healthc Mater; 2024 May; 13(13):e2400068. PubMed ID: 38320299 [TBL] [Abstract][Full Text] [Related]
46. Self-adjuvanting polymeric nanovaccines enhance IFN production and cytotoxic T cell response. Zhao M; He C; Zheng X; Jiang M; Xie Z; Wei H; Zhang S; Lin Y; Zhang J; Sun X J Control Release; 2024 May; 369():556-572. PubMed ID: 38580136 [TBL] [Abstract][Full Text] [Related]
48. Construction of lymph nodes-targeting tumor vaccines by using the principle of DNA base complementary pairing to enhance anti-tumor cellular immune response. Zha Y; Fu L; Liu Z; Lin J; Huang L J Nanobiotechnology; 2024 May; 22(1):230. PubMed ID: 38720322 [TBL] [Abstract][Full Text] [Related]
49. In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Han HD; Byeon Y; Jang JH; Jeon HN; Kim GH; Kim MG; Pack CG; Kang TH; Jung ID; Lim YT; Lee YJ; Lee JW; Shin BC; Ahn HJ; Sood AK; Park YM Sci Rep; 2016 Dec; 6():38348. PubMed ID: 27910914 [TBL] [Abstract][Full Text] [Related]
50. Metabolic radiolabeling and in vivo PET imaging of cytotoxic T lymphocytes to guide combination adoptive cell transfer cancer therapy. Lu D; Wang Y; Zhang T; Wang F; Li K; Zhou S; Zhu H; Yang Z; Liu Z J Nanobiotechnology; 2021 Jun; 19(1):175. PubMed ID: 34112200 [TBL] [Abstract][Full Text] [Related]
51. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. Liang R; Xie J; Li J; Wang K; Liu L; Gao Y; Hussain M; Shen G; Zhu J; Tao J Biomaterials; 2017 Dec; 149():41-50. PubMed ID: 28992509 [TBL] [Abstract][Full Text] [Related]
52. A spontaneous multifunctional hydrogel vaccine amplifies the innate immune response to launch a powerful antitumor adaptive immune response. Liang X; Li L; Li X; He T; Gong S; Zhu S; Zhang M; Wu Q; Gong C Theranostics; 2021; 11(14):6936-6949. PubMed ID: 34093863 [TBL] [Abstract][Full Text] [Related]
53. In vivo delivery of antigens by adenovirus dodecahedron induces cellular and humoral immune responses to elicit antitumor immunity. Villegas-Mendez A; Garin MI; Pineda-Molina E; Veratti E; Bueren JA; Fender P; Lenormand JL Mol Ther; 2010 May; 18(5):1046-53. PubMed ID: 20179681 [TBL] [Abstract][Full Text] [Related]
54. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Strome SE; Voss S; Wilcox R; Wakefield TL; Tamada K; Flies D; Chapoval A; Lu J; Kasperbauer JL; Padley D; Vile R; Gastineau D; Wettstein P; Chen L Cancer Res; 2002 Mar; 62(6):1884-9. PubMed ID: 11912169 [TBL] [Abstract][Full Text] [Related]
55. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Zhou S; Huang Y; Chen Y; Liu S; Xu M; Jiang T; Song Q; Jiang G; Gu X; Gao X; Chen J Biomaterials; 2020 Mar; 235():119795. PubMed ID: 32014739 [TBL] [Abstract][Full Text] [Related]
56. Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy. Song H; Su Q; Shi W; Huang P; Zhang C; Zhang C; Liu Q; Wang W Acta Biomater; 2022 Mar; 141():398-407. PubMed ID: 35007785 [TBL] [Abstract][Full Text] [Related]
57. Cell-permeable transgelin-2 as a potent therapeutic for dendritic cell-based cancer immunotherapy. Kim HR; Park JS; Park JH; Yasmin F; Kim CH; Oh SK; Chung IJ; Jun CD J Hematol Oncol; 2021 Mar; 14(1):43. PubMed ID: 33731208 [TBL] [Abstract][Full Text] [Related]
58. Nitroxide-radicals-modified gold nanorods for in vivo CT/MRI-guided photothermal cancer therapy. Xia L; Zhang C; Li M; Wang K; Wang Y; Xu P; Hu Y Int J Nanomedicine; 2018; 13():7123-7134. PubMed ID: 30464463 [TBL] [Abstract][Full Text] [Related]
59. Efficient ovalbumin delivery using a novel multifunctional micellar platform for targeted melanoma immunotherapy. He M; Huang L; Hou X; Zhong C; Bachir ZA; Lan M; Chen R; Gao F Int J Pharm; 2019 Apr; 560():1-10. PubMed ID: 30677484 [TBL] [Abstract][Full Text] [Related]
60. Multi-signaling pathway activation by pH responsive manganese particles for enhanced vaccination. Lv X; Huang J; Min J; Wang H; Xu Y; Zhang Z; Zhou X; Wang J; Liu Z; Zhao H J Control Release; 2023 May; 357():109-119. PubMed ID: 36738971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]