These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39059919)
41. Flavor of cold-hardy grapes: impact of berry maturity and environmental conditions. Pedneault K; Dorais M; Angers P J Agric Food Chem; 2013 Nov; 61(44):10418-38. PubMed ID: 24151907 [TBL] [Abstract][Full Text] [Related]
42. Screening of key odorants and anthocyanin compounds of cv. Okuzgozu (Vitis vinifera L.) red wines with a free run and pressed pomace using GC-MS-Olfactometry and LC-MS-MS. Tetik MA; Sevindik O; Kelebek H; Selli S J Mass Spectrom; 2018 May; 53(5):444-454. PubMed ID: 29469168 [TBL] [Abstract][Full Text] [Related]
44. 'Fortified' wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.). Urcan DE; Giacosa S; Torchio F; Río Segade S; Raimondi S; Bertolino M; Gerbi V; Pop N; Rolle L Food Chem; 2017 Mar; 219():346-356. PubMed ID: 27765237 [TBL] [Abstract][Full Text] [Related]
45. Study of free and glycosidically bound volatile compounds in air-dried raisins from three seedless grape varieties using HS-SPME with GC-MS. Wang D; Cai J; Zhu BQ; Wu GF; Duan CQ; Chen G; Shi Y Food Chem; 2015 Jun; 177():346-53. PubMed ID: 25660896 [TBL] [Abstract][Full Text] [Related]
46. Identification and quantification of a marker compound for 'pepper' aroma and flavor in shiraz grape berries by combination of chemometrics and gas chromatography-mass spectrometry. Parker M; Pollnitz AP; Cozzolino D; Francis IL; Herderich MJ J Agric Food Chem; 2007 Jul; 55(15):5948-55. PubMed ID: 17580875 [TBL] [Abstract][Full Text] [Related]
47. The pH adjustment of Vitis amurensis dry red wine revealed the evolution of organic acids, volatomics, and sensory quality during winemaking. Tian MB; Hu RQ; Liu ZL; Shi N; Lu HC; Duan CQ; Wang J; Sun YF; Kong QS; He F Food Chem; 2024 Mar; 436():137730. PubMed ID: 37862992 [TBL] [Abstract][Full Text] [Related]
48. Effects of gibberellic acid (GA Gao XT; Wu MH; Sun D; Li HQ; Chen WK; Yang HY; Liu FQ; Wang QC; Wang YY; Wang J; He F J Sci Food Agric; 2020 Jul; 100(9):3729-3740. PubMed ID: 32266978 [TBL] [Abstract][Full Text] [Related]
49. Study of the influence of maceration time and oenological practices on the aroma profile of Vranec wines. Petropulos VI; Bogeva E; Stafilov T; Stefova M; Siegmund B; Pabi N; Lankmayr E Food Chem; 2014 Dec; 165():506-14. PubMed ID: 25038705 [TBL] [Abstract][Full Text] [Related]
50. Post-storage changes of volatile compounds in air- and sun-dried raisins with different packaging materials using HS-SPME with GC/MS. Javed HU; Wang D; Wu GF; Kaleem QM; Duan CQ; Shi Y Food Res Int; 2019 May; 119():23-33. PubMed ID: 30884653 [TBL] [Abstract][Full Text] [Related]
51. Volatile composition and sensory properties of Vitis vinifera red cultivars from north west Spain: correlation between sensory and instrumental analysis. Vilanova M; Campo E; Escudero A; Graña M; Masa A; Cacho J Anal Chim Acta; 2012 Mar; 720():104-11. PubMed ID: 22365127 [TBL] [Abstract][Full Text] [Related]
53. Analytical and sensorial characterization of the aroma of wines produced with sour rotten grapes using GC-O and GC-MS: identification of key aroma compounds. Barata A; Campo E; Malfeito-Ferreira M; Loureiro V; Cacho J; Ferreira V J Agric Food Chem; 2011 Mar; 59(6):2543-53. PubMed ID: 21348497 [TBL] [Abstract][Full Text] [Related]
54. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Meng JF; Xu TF; Song CZ; Yu Y; Hu F; Zhang L; Zhang ZW; Xi ZM Food Chem; 2015 Oct; 185():127-34. PubMed ID: 25952850 [TBL] [Abstract][Full Text] [Related]
55. Phosphine fumigation - Time dependent changes in the volatile profile of table grapes. Friedemann AER; Andernach L; Jungnickel H; Borchmann DW; Baltaci D; Laux P; Schulz H; Luch A J Hazard Mater; 2020 Jul; 393():122480. PubMed ID: 32197200 [TBL] [Abstract][Full Text] [Related]
56. The accumulation profiles of terpene metabolites in three Muscat table grape cultivars through HS-SPME-GCMS. Sun L; Zhu B; Zhang X; Wang H; Yan A; Zhang G; Wang X; Xu H Sci Data; 2020 Jan; 7(1):5. PubMed ID: 31896793 [TBL] [Abstract][Full Text] [Related]
57. Characterization of the Key Aroma Compounds in Marselan Wine by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Tests. Lyu J; Ma Y; Xu Y; Nie Y; Tang K Molecules; 2019 Aug; 24(16):. PubMed ID: 31426361 [TBL] [Abstract][Full Text] [Related]
58. Impact of agronomic practices on grape aroma composition: a review. Alem H; Rigou P; Schneider R; Ojeda H; Torregrosa L J Sci Food Agric; 2019 Feb; 99(3):975-985. PubMed ID: 30142253 [TBL] [Abstract][Full Text] [Related]
59. Discovery of cold-resistance genes in Vitis amurensis using bud-based quantitative trait locus mapping and RNA-seq. Ma X; Zhao F; Su K; Lin H; Guo Y BMC Genomics; 2022 Aug; 23(1):551. PubMed ID: 35918639 [TBL] [Abstract][Full Text] [Related]
60. Influence of viticulture practices on grape aroma precursors and their relation with wine aroma. Hernandez-Orte P; Concejero B; Astrain J; Lacau B; Cacho J; Ferreira V J Sci Food Agric; 2015 Mar; 95(4):688-701. PubMed ID: 24852393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]