BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 3906028)

  • 1. Inhibition and inactivation of glucose-phosphorylating enzymes from Saccharomyces cerevisiae by D-xylose.
    Fernández R; Herrero P; Moreno F
    J Gen Microbiol; 1985 Oct; 131(10):2705-9. PubMed ID: 3906028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of inactivation of hexokinase PII of Saccharomyces cerevisiae by D-xylose.
    Fernández R; Herrero P; Fernández MT; Moreno F
    J Gen Microbiol; 1986 Dec; 132(12):3467-72. PubMed ID: 3309137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteolysis of hexokinase PII is not the triggering signal of carbon catabolite derepression in Saccharomyces cerevisiae.
    Fernández MT; Herrero P; Lopez-Boado YS; Fernández R; Moreno F
    J Gen Microbiol; 1987 Sep; 133(9):2509-16. PubMed ID: 3329214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of xylose incubation on the glucose transport system in Saccharomyces cerevisiae.
    Schuddemat J; Van den Broek PJ; Van Steveninck J
    Biochim Biophys Acta; 1986 Oct; 861(3):489-93. PubMed ID: 3533151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-phosphorylating enzymes of Candida yeasts and their regulation in vivo.
    Hirai M; Ohtani E; Tanaka A; Fukui S
    Biochim Biophys Acta; 1977 Feb; 480(2):357-66. PubMed ID: 836848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII.
    Rose M; Albig W; Entian KD
    Eur J Biochem; 1991 Aug; 199(3):511-8. PubMed ID: 1868842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose repression and hexokinase isoenzymes in yeast. Isolation and characterization of a modified hexokinase PII isoenzyme.
    Kopetzki E; Entian KD
    Eur J Biochem; 1985 Feb; 146(3):657-62. PubMed ID: 3882419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autophosphorylation of yeast hexokinase PII.
    Fernández R; Herrero P; Fernández E; Fernández T; López-Boado YS; Moreno F
    J Gen Microbiol; 1988 Sep; 134(9):2493-8. PubMed ID: 3076185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Km glucose-phosphorylating (glucokinase) activities in a range of tumor cell lines and inhibition of rates of tumor growth by the specific enzyme inhibitor mannoheptulose.
    Board M; Colquhoun A; Newsholme EA
    Cancer Res; 1995 Aug; 55(15):3278-85. PubMed ID: 7614462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and biochemical characterisation of Aspergillus niger hexokinase--the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate.
    Panneman H; Ruijter GJ; van den Broeck HC; Visser J
    Eur J Biochem; 1998 Nov; 258(1):223-32. PubMed ID: 9851713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of inactivation of UDP-glucose 4-epimerase from Saccharomyces cerevisiae by D-xylose and L-arabinose.
    Cármenes RS; Gascón S; Moreno F
    Yeast; 1986 Jun; 2(2):101-8. PubMed ID: 3333299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression.
    Entian KD; Fröhlich KU
    J Bacteriol; 1984 Apr; 158(1):29-35. PubMed ID: 6370959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissimilar effects of D-mannoheptulose on the phosphorylation of alpha- versus beta-D-glucose by either hexokinase or glucokinase.
    Zhang Y; Courtois P; Sener A; Malaisse WJ
    Int J Mol Med; 2004 Jul; 14(1):107-12. PubMed ID: 15202024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the oligomeric state of yeast hexokinase isozymes on inactivation and unfolding by urea.
    Morales FC; Bianconi ML
    Biophys Chem; 2001 Jul; 91(2):183-90. PubMed ID: 11429207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme.
    Albig W; Entian KD
    Gene; 1988 Dec; 73(1):141-52. PubMed ID: 3072253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae.
    Entian KD; Mecke D
    J Biol Chem; 1982 Jan; 257(2):870-4. PubMed ID: 7033220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of hexokinase isoenzyme PI from Saccharomyces cerevisiae: PI transformants confirm the unique role of hexokinase isoenzyme PII for glucose repression in yeasts.
    Entian KD; Kopetzki E; Fröhlich KU; Mecke D
    Mol Gen Genet; 1984; 198(2):50-4. PubMed ID: 6394965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling.
    Flipphi M; van de Vondervoort PJ; Ruijter GJ; Visser J; Arst HN; Felenbok B
    J Biol Chem; 2003 Apr; 278(14):11849-57. PubMed ID: 12519784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexokinase PII from Saccharomyces cerevisiae is regulated by changes in the cytosolic Mg2+-free ATP concentration.
    Moreno F; Fernandez T; Fernandez R; Herrero P
    Eur J Biochem; 1986 Dec; 161(3):565-9. PubMed ID: 3539593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of hexokinase isoenzymes depending on a carbon source in Saccharomyces cerevisiae.
    Muratsubaki H; Katsume T
    Biochem Biophys Res Commun; 1979 Feb; 86(4):1030-6. PubMed ID: 373758
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.