These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39060307)

  • 1. Enhancing gait recognition by multimodal fusion of mobilenetv1 and xception features via PCA for OaA-SVM classification.
    Pundir A; Sharma M; Pundir A; Saini D; Ouahada K; Bharany S; Rehman AU; Hamam H
    Sci Rep; 2024 Jul; 14(1):17155. PubMed ID: 39060307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.
    Pradhan C; Wuehr M; Akrami F; Neuhaeusser M; Huth S; Brandt T; Jahn K; Schniepp R
    J Electromyogr Kinesiol; 2015 Apr; 25(2):413-22. PubMed ID: 25725811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCA-based SVM for automatic recognition of gait patterns.
    Wu J; Wang J
    J Appl Biomech; 2008 Feb; 24(1):83-7. PubMed ID: 18309187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Gait Recognition Based on Multiple Feature Combination and Parameter Optimization Algorithms.
    Gao F; Tian T; Yao T; Zhang Q
    Comput Intell Neurosci; 2021; 2021():6693206. PubMed ID: 33727913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speed invariant gait recognition-The enhanced mutual subspace method.
    Iwashita Y; Sakano H; Kurazume R; Stoica A
    PLoS One; 2021; 16(8):e0255927. PubMed ID: 34379692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phasor-Based Myoelectric Synergy Features: A Fast Hand-Crafted Feature Extraction Scheme for Boosting Performance in Gait Phase Recognition.
    Tigrini A; Mobarak R; Mengarelli A; Khushaba RN; Al-Timemy AH; Verdini F; Gambi E; Fioretti S; Burattini L
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Gait Recognition: A Single Stream Optimal Deep Learning Features Fusion.
    Saleem F; Khan MA; Alhaisoni M; Tariq U; Armghan A; Alenezi F; Choi JI; Kadry S
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Parkinson's disease recognition based on statistical pooling method using acoustic features.
    Yaman O; Ertam F; Tuncer T
    Med Hypotheses; 2020 Feb; 135():109483. PubMed ID: 31954340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
    Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ
    BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature extraction via KPCA for classification of gait patterns.
    Wu J; Wang J; Liu L
    Hum Mov Sci; 2007 Jun; 26(3):393-411. PubMed ID: 17509708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Gait Recognition Based on Attribute Discovery.
    Chen X; Weng J; Lu W; Xu J; Xin Chen ; Jian Weng ; Wei Lu ; Jiaming Xu ; Weng J; Chen X; Xu J; Lu W
    IEEE Trans Pattern Anal Mach Intell; 2018 Jul; 40(7):1697-1710. PubMed ID: 28708545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fusion-Assisted Multi-Stream Deep Learning and ESO-Controlled Newton-Raphson-Based Feature Selection Approach for Human Gait Recognition.
    Jahangir F; Khan MA; Alhaisoni M; Alqahtani A; Alsubai S; Sha M; Al Hejaili A; Cha JH
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Recognition and Assessment of Post-Stroke Hemiparetic Gait by Fusing Kinematic, Kinetic, and Electrophysiological Data.
    Cui C; Bian GB; Hou ZG; Zhao J; Su G; Zhou H; Peng L; Wang W
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):856-864. PubMed ID: 29641390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait.
    Kamruzzaman J; Begg RK
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2479-90. PubMed ID: 17153205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of finite sample size on feature selection and classification: a simulation study.
    Way TW; Sahiner B; Hadjiiski LM; Chan HP
    Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Support vector machines for automated gait classification.
    Begg RK; Palaniswami M; Owen B
    IEEE Trans Biomed Eng; 2005 May; 52(5):828-38. PubMed ID: 15887532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusion of sparse representation and dictionary matching for identification of humans in uncontrolled environment.
    Fernandes SL; Bala GJ
    Comput Biol Med; 2016 Sep; 76():215-37. PubMed ID: 27498411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of clinical features for pattern recognition applied to gait analysis.
    Altilio R; Paoloni M; Panella M
    Med Biol Eng Comput; 2017 Apr; 55(4):685-695. PubMed ID: 27435068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subspace identification and classification of healthy human gait.
    von Tscharner V; Enders H; Maurer C
    PLoS One; 2013; 8(7):e65063. PubMed ID: 23861736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The detection of age groups by dynamic gait outcomes using machine learning approaches.
    Zhou Y; Romijnders R; Hansen C; Campen JV; Maetzler W; Hortobágyi T; Lamoth CJC
    Sci Rep; 2020 Mar; 10(1):4426. PubMed ID: 32157168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.