These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 39060408)

  • 1. Improvement of directivity in plasmonic nanoantennas based on structured cubic gold nanoparticles.
    Moazen Dehkordi S; Mohammadi H
    Sci Rep; 2024 Jul; 14(1):17153. PubMed ID: 39060408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis of a circular hybrid plasmonic waveguide to design a hybrid plasmonic nano-antenna.
    Khodadadi M; Nozhat N; Moshiri SMM
    Sci Rep; 2020 Sep; 10(1):15122. PubMed ID: 32934251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Directive Hybrid Metal-Dielectric Yagi-Uda Nanoantennas.
    Ho J; Fu YH; Dong Z; Paniagua-Dominguez R; Koay EHH; Yu YF; Valuckas V; Kuznetsov AI; Yang JKW
    ACS Nano; 2018 Aug; 12(8):8616-8624. PubMed ID: 30048106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic nanopatch array for optical integrated circuit applications.
    Qu SW; Nie ZP
    Sci Rep; 2013 Nov; 3():3172. PubMed ID: 24201454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-Shell Nano-Antenna Configurations for Array Formation with More Stability Having Conventional and Non-Conventional Directivity and Propagation Behavior.
    Hayat Q; Geng J; Liang X; Jin R; Ur Rehman S; He C; Wu H; Nawaz H
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33406685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic approach to study a hybrid plasmonic waveguide-fed and numerically design a nano-antenna based on the new director.
    Khodadadi M; Nozhat N; Moshiri SMM
    Opt Express; 2020 Feb; 28(3):3305-3330. PubMed ID: 32122003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waveguide-fed optical hybrid plasmonic patch nano-antenna.
    Yousefi L; Foster AC
    Opt Express; 2012 Jul; 20(16):18326-35. PubMed ID: 23038383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High
    Randerson SA; Zotev PG; Hu X; Knight AJ; Wang Y; Nagarkar S; Hensman D; Wang Y; Tartakovskii AI
    ACS Nano; 2024 Jun; 18(25):16208-16221. PubMed ID: 38869002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robustness of plasmon phased array nanoantennas to disorder.
    Arango FB; Thijssen R; Brenny B; Coenen T; Koenderink AF
    Sci Rep; 2015 Jun; 5():10911. PubMed ID: 26038871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanoloop array antenna.
    Ahmadi A; Mosallaei H
    Opt Lett; 2010 Nov; 35(21):3706-8. PubMed ID: 21042398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence-Driven Broadband Transmitting Directional Optical Nanoantennas.
    See KM; Lin FC; Chen TY; Huang YX; Huang CH; Yeşilyurt ATM; Huang JS
    Nano Lett; 2018 Sep; 18(9):6002-6008. PubMed ID: 30142981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrahigh sensitive refractive index nanosensors based on nanoshells, nanocages and nanoframes: effects of plasmon hybridization and restoring force.
    Omrani M; Mohammadi H; Fallah H
    Sci Rep; 2021 Jan; 11(1):2065. PubMed ID: 33483573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallic Nanoshells with Sub-10 nm Thickness and Their Performance as Surface-Enhanced Spectroscopy Substrate.
    Zhang X; Guo L; Luo J; Zhao X; Wang T; Li Y; Fu Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9889-96. PubMed ID: 27019405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly directive switchable nanoantenna array based on dielectric omega particles at terahertz frequencies.
    Sabri R; Pourziad A; Nikmehr S
    Appl Opt; 2018 Mar; 57(9):2292-2298. PubMed ID: 29604028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetoplasmonic Nanoantennas for On-Chip Reconfigurable Optical Wireless Communications.
    Damasceno GHB; Carvalho WOF; Cerqueira Sodré A; Oliveira ON; Mejía-Salazar JR
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8617-8623. PubMed ID: 36689678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-Dielectric Antenna Wavelength Router with Bidirectional Scattering of Visible Light.
    Li J; Verellen N; Vercruysse D; Bearda T; Lagae L; Van Dorpe P
    Nano Lett; 2016 Jul; 16(7):4396-403. PubMed ID: 27244478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.
    Savaliya PB; Thomas A; Dua R; Dhawan A
    Opt Express; 2017 Oct; 25(20):23755-23772. PubMed ID: 29041327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas.
    Gui L; Bagheri S; Strohfeldt N; Hentschel M; Zgrabik CM; Metzger B; Linnenbank H; Hu EL; Giessen H
    Nano Lett; 2016 Sep; 16(9):5708-13. PubMed ID: 27494639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact dipole nanoantenna coupler to plasmonic slot waveguide.
    Andryieuski A; Malureanu R; Biagi G; Holmgaard T; Lavrinenko A
    Opt Lett; 2012 Mar; 37(6):1124-6. PubMed ID: 22446246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic optical trapping of nanoparticles using T-shaped copper nanoantennas.
    Li R; Zhao Y; Li R; Liu H; Ge Y; Xu Z
    Opt Express; 2021 Mar; 29(7):9826-9835. PubMed ID: 33820135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.